Mostrar el registro sencillo del ítem

dc.contributor.author
García, Adolfo Martín  
dc.contributor.author
Arias Vergara, Tomás  
dc.contributor.author
Vásquez Correa, Juan Camilo  
dc.contributor.author
Nöth, Elmar  
dc.contributor.author
Schuster, Maria  
dc.contributor.author
Welch, Ariane  
dc.contributor.author
Bocanegra, Yamile  
dc.contributor.author
Baena, Ana  
dc.contributor.author
Orozco Arroyave, Juan Rafael  
dc.date.available
2022-04-22T01:19:59Z  
dc.date.issued
2021-08-14  
dc.identifier.citation
García, Adolfo Martín; Arias Vergara, Tomás; Vásquez Correa, Juan Camilo; Nöth, Elmar; Schuster, Maria; et al.; Cognitive determinants of dysarthria in Parkinsons disease. An automated machine learning approach; Wiley-liss, div John Wiley & Sons Inc.; Movement Disorders; 36; 12; 14-8-2021; 2862-2873  
dc.identifier.issn
0885-3185  
dc.identifier.uri
http://hdl.handle.net/11336/155516  
dc.description.abstract
Background: Dysarthric symptoms in Parkinson's disease vary greatly across cohorts. Abundant research suggests that such heterogeneity could reflect subject-level and task-related cognitive factors. However, the interplay of these variables during motor speech remains underexplored, let alone by administering validated materials to carefully matched samples with varying cognitive profiles and combining automated tools with machine learning methods. Objectives: We aimed to identify which speech dimensions best identify Parkinson's disease patients in cognitively heterogeneous, cognitively preserved, and cognitively impaired groups through tasks with low (reading) and high (retelling) processing demands. Methods: We used support vector machines to analyze prosodic, articulatory, and phonemic identifiability features. Patient groups were compared with healthy controls and against each other in both tasks, using each measure separately and in combination. Results: Relative to controls, patients in cognitively heterogeneous and cognitively preserved groups were best discriminated by combined dysarthric signs during reading (accuracy = 84% and 80.2%). Conversely, cognitively impaired patients were maximally discriminated from controls when considering phonemic identifiability during retelling (accuracy = 86.9%). This same pattern maximally distinguished between cognitively spared and impaired patients (accuracy = 72.1%). Also, cognitive (executive) symptom severity was predicted by prosody in cognitively preserved patients and by phonemic identifiability in cognitively heterogeneous and impaired groups. No measure predicted overall motor dysfunction in any group. Conclusions: Predominant dysarthric symptoms seem best captured through undemanding tasks in cognitively heterogeneous and preserved cohorts and through cognitively loaded tasks in cognitively impaired patients. Further applications of this framework could enhance dysarthria assessments in Parkinson's disease.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley-liss, div John Wiley & Sons Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
PARKINSON'S DISEASE  
dc.subject
DYSARTHRIA  
dc.subject
AUTOMATED SPEECH ANALYSIS  
dc.subject
MILD COGNITIVE IMPAIRMENT  
dc.subject
COGNITIVE DEMANDS  
dc.subject.classification
Lingüística  
dc.subject.classification
Lengua y Literatura  
dc.subject.classification
HUMANIDADES  
dc.subject.classification
Psicología  
dc.subject.classification
Psicología  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Cognitive determinants of dysarthria in Parkinsons disease. An automated machine learning approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-07T22:29:09Z  
dc.identifier.eissn
1531-8257  
dc.journal.volume
36  
dc.journal.number
12  
dc.journal.pagination
2862-2873  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Universidad de San Andrés; Argentina. Universidad de Santiago de Chile; Chile. University of California; Estados Unidos  
dc.description.fil
Fil: Arias Vergara, Tomás. Universidad de Antioquia; Colombia. Universitat Erlangen Nuremberg; Alemania. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Vásquez Correa, Juan Camilo. Universidad de Antioquia; Colombia. Universitat Erlangen Nuremberg; Alemania  
dc.description.fil
Fil: Nöth, Elmar. Universitat Erlangen Nuremberg; Alemania  
dc.description.fil
Fil: Schuster, Maria. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Welch, Ariane. University of California; Estados Unidos  
dc.description.fil
Fil: Bocanegra, Yamile. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Baena, Ana. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Orozco Arroyave, Juan Rafael. Universidad de Antioquia; Colombia. Universitat Erlangen Nuremberg; Alemania  
dc.journal.title
Movement Disorders  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://movementdisorders.onlinelibrary.wiley.com/doi/10.1002/mds.28751  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/mds.28751