Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Cognitive determinants of dysarthria in Parkinsons disease. An automated machine learning approach

García, Adolfo MartínIcon ; Arias Vergara, Tomás; Vásquez Correa, Juan Camilo; Nöth, Elmar; Schuster, Maria; Welch, Ariane; Bocanegra, Yamile; Baena, Ana; Orozco Arroyave, Juan Rafael
Fecha de publicación: 14/08/2021
Editorial: Wiley-liss, div John Wiley & Sons Inc.
Revista: Movement Disorders
ISSN: 0885-3185
e-ISSN: 1531-8257
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Lingüística; Psicología

Resumen

Background: Dysarthric symptoms in Parkinson's disease vary greatly across cohorts. Abundant research suggests that such heterogeneity could reflect subject-level and task-related cognitive factors. However, the interplay of these variables during motor speech remains underexplored, let alone by administering validated materials to carefully matched samples with varying cognitive profiles and combining automated tools with machine learning methods. Objectives: We aimed to identify which speech dimensions best identify Parkinson's disease patients in cognitively heterogeneous, cognitively preserved, and cognitively impaired groups through tasks with low (reading) and high (retelling) processing demands. Methods: We used support vector machines to analyze prosodic, articulatory, and phonemic identifiability features. Patient groups were compared with healthy controls and against each other in both tasks, using each measure separately and in combination. Results: Relative to controls, patients in cognitively heterogeneous and cognitively preserved groups were best discriminated by combined dysarthric signs during reading (accuracy = 84% and 80.2%). Conversely, cognitively impaired patients were maximally discriminated from controls when considering phonemic identifiability during retelling (accuracy = 86.9%). This same pattern maximally distinguished between cognitively spared and impaired patients (accuracy = 72.1%). Also, cognitive (executive) symptom severity was predicted by prosody in cognitively preserved patients and by phonemic identifiability in cognitively heterogeneous and impaired groups. No measure predicted overall motor dysfunction in any group. Conclusions: Predominant dysarthric symptoms seem best captured through undemanding tasks in cognitively heterogeneous and preserved cohorts and through cognitively loaded tasks in cognitively impaired patients. Further applications of this framework could enhance dysarthria assessments in Parkinson's disease.
Palabras clave: PARKINSON'S DISEASE , DYSARTHRIA , AUTOMATED SPEECH ANALYSIS , MILD COGNITIVE IMPAIRMENT , COGNITIVE DEMANDS
Ver el registro completo
 
Archivos asociados
Tamaño: 3.533Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/155516
URL: https://movementdisorders.onlinelibrary.wiley.com/doi/10.1002/mds.28751
DOI: https://doi.org/10.1002/mds.28751
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
García, Adolfo Martín; Arias Vergara, Tomás; Vásquez Correa, Juan Camilo; Nöth, Elmar; Schuster, Maria; et al.; Cognitive determinants of dysarthria in Parkinsons disease. An automated machine learning approach; Wiley-liss, div John Wiley & Sons Inc.; Movement Disorders; 36; 12; 14-8-2021; 2862-2873
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES