Mostrar el registro sencillo del ítem

dc.contributor.author
Ruiz Perez, Daniel  
dc.contributor.author
Lugo Martinez, Jose  
dc.contributor.author
Bourguignon, Natalia  
dc.contributor.author
Mathee, Kalai  
dc.contributor.author
Lerner, Betiana  
dc.contributor.author
Bar Joseph, Ziv  
dc.contributor.author
Narasimhan, Giri  
dc.date.available
2022-04-13T19:05:44Z  
dc.date.issued
2021-03-30  
dc.identifier.citation
Ruiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, Natalia; Mathee, Kalai; Lerner, Betiana; et al.; Dynamic bayesian networks for integrating multi-omics time series microbiome data; American Society for Microbiology; mSystems; 6; 2; 30-3-2021; 1-17  
dc.identifier.issn
0021-9193  
dc.identifier.uri
http://hdl.handle.net/11336/155252  
dc.description.abstract
A key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Society for Microbiology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Longitudinal microbiome analysis,  
dc.subject
Microbial composition prediction,  
dc.subject
Dynamic Bayesian networks,  
dc.subject
Temporal alignment  
dc.subject
Multi-omic integration,  
dc.subject.classification
Biología Celular, Microbiología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Dynamic bayesian networks for integrating multi-omics time series microbiome data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-07T20:49:42Z  
dc.identifier.eissn
1098-5530  
dc.journal.volume
6  
dc.journal.number
2  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ruiz Perez, Daniel. Florida International University; Estados Unidos  
dc.description.fil
Fil: Lugo Martinez, Jose. University of Carnegie Mellon; Estados Unidos  
dc.description.fil
Fil: Bourguignon, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados Unidos. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Mathee, Kalai. Florida International University; Estados Unidos  
dc.description.fil
Fil: Lerner, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados Unidos  
dc.description.fil
Fil: Narasimhan, Giri. Florida International University; Estados Unidos  
dc.journal.title
mSystems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1128/mSystems.01105-20  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/mSystems.01105-20