Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Dynamic bayesian networks for integrating multi-omics time series microbiome data

Ruiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, NataliaIcon ; Mathee, Kalai; Lerner, BetianaIcon ; Bar Joseph, Ziv; Narasimhan, Giri
Fecha de publicación: 30/03/2021
Editorial: American Society for Microbiology
Revista: mSystems
ISSN: 0021-9193
e-ISSN: 1098-5530
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biología Celular, Microbiología

Resumen

A key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions
Palabras clave: Longitudinal microbiome analysis, , Microbial composition prediction, , Dynamic Bayesian networks, , Temporal alignment , Multi-omic integration,
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.432Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/155252
DOI: https://doi.org/10.1128/mSystems.01105-20
URL: https://journals.asm.org/doi/10.1128/mSystems.01105-20
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Ruiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, Natalia; Mathee, Kalai; Lerner, Betiana; et al.; Dynamic bayesian networks for integrating multi-omics time series microbiome data; American Society for Microbiology; mSystems; 6; 2; 30-3-2021; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES