Mostrar el registro sencillo del ítem

dc.contributor.author
Jeronimo, Gabriela Tali  
dc.contributor.author
Krick, Teresa Elena Genoveva  
dc.contributor.author
Sabia, Juan Vicente Rafael  
dc.contributor.author
Sombra, Martín  
dc.date.available
2022-04-13T11:03:50Z  
dc.date.issued
2004-01  
dc.identifier.citation
Jeronimo, Gabriela Tali; Krick, Teresa Elena Genoveva; Sabia, Juan Vicente Rafael; Sombra, Martín; The Computational Complexity of the Chow Form; Springer; Foundations Of Computational Mathematics; 4; 1; 1-2004; 41-117  
dc.identifier.issn
1615-3375  
dc.identifier.uri
http://hdl.handle.net/11336/155135  
dc.description.abstract
We present a bounded probability algorithm for the computation of the Chowforms of the equidimensional components of an algebraic variety. In particular, this gives an alternative procedure for the effective equidimensional decomposition of the variety, since each equidimensional component is characterized by its Chow form. The expected complexity of the algorithm is polynomial in the size and the geometric degree of the input equation system defining the variety. Hence it improves (or meets in some special cases) the complexity of all previous algorithms for computing Chow forms. In addition to this, we clarify the probability and uniformity aspects, which constitutes a further contribution of the paper. The algorithm is based on elimination theory techniques, in line with the geometric resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators. In fact, ours can be considered as an extension of their algorithm for zero-dimensional systems to the case of positive-dimensional varieties. The key element for dealing with positive-dimensional varieties is a new Poisson-type product formula. This formula allows us to compute the Chow form of an equidimensional variety from a suitable zero-dimensional fiber. As an application, we obtain an algorithm to compute a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As another application, we derive an algorithm for the computation of the (unique) solution of a generic overdetermined polynomial equation system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHOW FORM  
dc.subject
EQUIDIMENSIONAL DECOMPOSITION OF ALGEBRAIC VARIETIES  
dc.subject
SYMBOLIC NEWTON ALGORITHM  
dc.subject
SPARSE RESULTANT  
dc.subject
OVERDETERMINED POLYNOMIAL EQUATION SYSTEM  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The Computational Complexity of the Chow Form  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T20:50:16Z  
dc.journal.volume
4  
dc.journal.number
1  
dc.journal.pagination
41-117  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Sombra, Martín. Universite de Paris; Francia  
dc.journal.title
Foundations Of Computational Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10208-002-0078-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10208-002-0078-2