Mostrar el registro sencillo del ítem
dc.contributor.author
Jeronimo, Gabriela Tali
dc.contributor.author
Krick, Teresa Elena Genoveva
dc.contributor.author
Sabia, Juan Vicente Rafael
dc.contributor.author
Sombra, Martín
dc.date.available
2022-04-13T11:03:50Z
dc.date.issued
2004-01
dc.identifier.citation
Jeronimo, Gabriela Tali; Krick, Teresa Elena Genoveva; Sabia, Juan Vicente Rafael; Sombra, Martín; The Computational Complexity of the Chow Form; Springer; Foundations Of Computational Mathematics; 4; 1; 1-2004; 41-117
dc.identifier.issn
1615-3375
dc.identifier.uri
http://hdl.handle.net/11336/155135
dc.description.abstract
We present a bounded probability algorithm for the computation of the Chowforms of the equidimensional components of an algebraic variety. In particular, this gives an alternative procedure for the effective equidimensional decomposition of the variety, since each equidimensional component is characterized by its Chow form. The expected complexity of the algorithm is polynomial in the size and the geometric degree of the input equation system defining the variety. Hence it improves (or meets in some special cases) the complexity of all previous algorithms for computing Chow forms. In addition to this, we clarify the probability and uniformity aspects, which constitutes a further contribution of the paper. The algorithm is based on elimination theory techniques, in line with the geometric resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators. In fact, ours can be considered as an extension of their algorithm for zero-dimensional systems to the case of positive-dimensional varieties. The key element for dealing with positive-dimensional varieties is a new Poisson-type product formula. This formula allows us to compute the Chow form of an equidimensional variety from a suitable zero-dimensional fiber. As an application, we obtain an algorithm to compute a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As another application, we derive an algorithm for the computation of the (unique) solution of a generic overdetermined polynomial equation system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHOW FORM
dc.subject
EQUIDIMENSIONAL DECOMPOSITION OF ALGEBRAIC VARIETIES
dc.subject
SYMBOLIC NEWTON ALGORITHM
dc.subject
SPARSE RESULTANT
dc.subject
OVERDETERMINED POLYNOMIAL EQUATION SYSTEM
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The Computational Complexity of the Chow Form
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T20:50:16Z
dc.journal.volume
4
dc.journal.number
1
dc.journal.pagination
41-117
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Sombra, Martín. Universite de Paris; Francia
dc.journal.title
Foundations Of Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10208-002-0078-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10208-002-0078-2
Archivos asociados