Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The Computational Complexity of the Chow Form

Jeronimo, Gabriela TaliIcon ; Krick, Teresa Elena GenovevaIcon ; Sabia, Juan Vicente RafaelIcon ; Sombra, Martín
Fecha de publicación: 01/2004
Editorial: Springer
Revista: Foundations Of Computational Mathematics
ISSN: 1615-3375
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We present a bounded probability algorithm for the computation of the Chowforms of the equidimensional components of an algebraic variety. In particular, this gives an alternative procedure for the effective equidimensional decomposition of the variety, since each equidimensional component is characterized by its Chow form. The expected complexity of the algorithm is polynomial in the size and the geometric degree of the input equation system defining the variety. Hence it improves (or meets in some special cases) the complexity of all previous algorithms for computing Chow forms. In addition to this, we clarify the probability and uniformity aspects, which constitutes a further contribution of the paper. The algorithm is based on elimination theory techniques, in line with the geometric resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators. In fact, ours can be considered as an extension of their algorithm for zero-dimensional systems to the case of positive-dimensional varieties. The key element for dealing with positive-dimensional varieties is a new Poisson-type product formula. This formula allows us to compute the Chow form of an equidimensional variety from a suitable zero-dimensional fiber. As an application, we obtain an algorithm to compute a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As another application, we derive an algorithm for the computation of the (unique) solution of a generic overdetermined polynomial equation system.
Palabras clave: CHOW FORM , EQUIDIMENSIONAL DECOMPOSITION OF ALGEBRAIC VARIETIES , SYMBOLIC NEWTON ALGORITHM , SPARSE RESULTANT , OVERDETERMINED POLYNOMIAL EQUATION SYSTEM
Ver el registro completo
 
Archivos asociados
Tamaño: 779.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/155135
DOI: http://dx.doi.org/10.1007/s10208-002-0078-2
URL: https://link.springer.com/article/10.1007/s10208-002-0078-2
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Jeronimo, Gabriela Tali; Krick, Teresa Elena Genoveva; Sabia, Juan Vicente Rafael; Sombra, Martín; The Computational Complexity of the Chow Form; Springer; Foundations Of Computational Mathematics; 4; 1; 1-2004; 41-117
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES