Mostrar el registro sencillo del ítem
dc.contributor.author
Galicer, Daniel Eric

dc.contributor.author
Merzbacher, Diego Mariano

dc.contributor.author
Pinasco, Damian

dc.date.available
2022-04-08T21:56:16Z
dc.date.issued
2021-03
dc.identifier.citation
Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; Asymptotic estimates for the largest volume ratio of a convex body; European Mathematical Society; Revista Matematica Iberoamericana; 37; 6; 3-2021; 1-26
dc.identifier.issn
0213-2230
dc.identifier.uri
http://hdl.handle.net/11336/154848
dc.description.abstract
The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
European Mathematical Society

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
VOLUME RATIO
dc.subject
RANDOM POLYTOPES
dc.subject
UNCONDITIONAL CONVEX BODIES
dc.subject
SCHATTEN CLASES
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Asymptotic estimates for the largest volume ratio of a convex body
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-07T21:04:35Z
dc.journal.volume
37
dc.journal.number
6
dc.journal.pagination
1-26
dc.journal.pais
Alemania

dc.journal.ciudad
Berlín
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina
dc.journal.title
Revista Matematica Iberoamericana

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=37&iss=6&rank=9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/rmi/1263
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1901.00771
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48550/arXiv.1901.00771
Archivos asociados