Mostrar el registro sencillo del ítem

dc.contributor.author
Galicer, Daniel Eric  
dc.contributor.author
Merzbacher, Diego Mariano  
dc.contributor.author
Pinasco, Damian  
dc.date.available
2022-04-08T21:56:16Z  
dc.date.issued
2021-03  
dc.identifier.citation
Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; Asymptotic estimates for the largest volume ratio of a convex body; European Mathematical Society; Revista Matematica Iberoamericana; 37; 6; 3-2021; 1-26  
dc.identifier.issn
0213-2230  
dc.identifier.uri
http://hdl.handle.net/11336/154848  
dc.description.abstract
The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
VOLUME RATIO  
dc.subject
RANDOM POLYTOPES  
dc.subject
UNCONDITIONAL CONVEX BODIES  
dc.subject
SCHATTEN CLASES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Asymptotic estimates for the largest volume ratio of a convex body  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-07T21:04:35Z  
dc.journal.volume
37  
dc.journal.number
6  
dc.journal.pagination
1-26  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina  
dc.journal.title
Revista Matematica Iberoamericana  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=37&iss=6&rank=9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/rmi/1263  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1901.00771  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48550/arXiv.1901.00771