Artículo
Asymptotic estimates for the largest volume ratio of a convex body
Fecha de publicación:
03/2021
Editorial:
European Mathematical Society
Revista:
Revista Matematica Iberoamericana
ISSN:
0213-2230
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional.
Palabras clave:
VOLUME RATIO
,
RANDOM POLYTOPES
,
UNCONDITIONAL CONVEX BODIES
,
SCHATTEN CLASES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; Asymptotic estimates for the largest volume ratio of a convex body; European Mathematical Society; Revista Matematica Iberoamericana; 37; 6; 3-2021; 1-26
Compartir
Altmétricas