Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage

Gholivand, Mohammad Bagher; Jalalvand, Alí R.; Goicoechea, Hector CasimiroIcon ; Skov, Thomas
Fecha de publicación: 01/2014
Editorial: Elsevier Science
Revista: Talanta
ISSN: 0039-9140
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

For the first time, several multivariate calibration (MVC) models including partial least squares-1 (PLS-1), continuum power regression (CPR), multiple linear regression-successive projections algorithm (MLRSPA), robust continuum regression (RCR), partial robust M-regression (PRM), polynomial-PLS (PLY-PLS), spline-PLS (SPL-PLS), radial basis function-PLS (RBF-PLS), least squares-support vector machines (LS-SVM), wavelet transform-artificial neural network (WT-ANN), discrete wavelet transform-ANN (DWT-ANN), and back propagation-ANN (BP-ANN) have been constructed on the basis of non-bilinear first order square wave voltammetric (SWV) data for the simultaneous determination of ascorbic acid (AA), uric acid (UA), dopamine (DP) and nitrite (NT) at a glassy carbon electrode (GCE) to identify which technique offers the best predictions. The compositions of the calibration mixtures were selected according to a simplex lattice design (SLD) and validated with an external set of analytes' mixtures. An asymmetric least squares splines regression (AsLSSR) algorithm was applied for correcting the baselines. A correlation optimized warping (COW) algorithm was used to data alignment and lack of bilinearity was tackled by potential shift correction. The effects of several pre-processing techniques such as genetic algorithm (GA), orthogonal signal correction (OSC), mean centering (MC), robust median centering (RMC), wavelet denoising (WD), and Savitsky–Golay smoothing (SGS) on the predictive ability of the mentioned MVC models were examined. The best preprocessing technique was found for each model. According to the results obtained, the RBF-PLS was recommended to simultaneously assay the concentrations of AA, UA, DP and NT in human serum samples.
Palabras clave: Ascorbic Acid , Uric Acid , Dopamine , Nitrite , Simultaneous Determination , Linear And Non-Linear Determination , Calibration Models
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.468Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/15435
DOI: http://dx.doi.org/10.1016/j.talanta.2013.11.028
URL: http://www.sciencedirect.com/science/article/pii/S0039914013009053
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Gholivand, Mohammad Bagher; Jalalvand, Alí R.; Goicoechea, Hector Casimiro; Skov, Thomas; Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage; Elsevier Science; Talanta; 119; 1-2014; 553-563
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES