Mostrar el registro sencillo del ítem

dc.contributor.author
Jawtuschenko, Alexis Boris  
dc.contributor.author
Lombardi, Ariel Luis  
dc.date.available
2022-03-29T02:07:02Z  
dc.date.issued
2019-06  
dc.identifier.citation
Jawtuschenko, Alexis Boris; Lombardi, Ariel Luis; A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes; Springer; Calcolo; 56; 2; 6-2019; 1-34  
dc.identifier.issn
0008-0624  
dc.identifier.uri
http://hdl.handle.net/11336/153974  
dc.description.abstract
A Virtual Element Method is introduced for the mixed approximation of a simple model problem for the Laplace operator on a polyhedron. The method is fully analysed when the meshes are made up of triangular right prisms, pyramids and tetrahedra. The local discrete spaces coincide with the lowest order Raviart-Thomas spaces on tetrahedral and triangular right prismatic elements, and extend them to pyramidal elements. The discrete scheme is well posed and optimal interpolation error estimates are proved on meshes which allow for anisotropic elements. In particular, local interpolation error estimates for the discrete element space are optimal and anisotropic on anisotropic right prisms. Furthermore, a discretization of the model problem in the presence of edge and vertex singularities is analysed for the proposed method on a family of suitably designed graded meshes, and optimal estimates for the approximation error are obtained, extending in this way the results of [Farhloul, Nicaise, Paquet, ESAIM: M2AN 35 (2001) 907–920] where cylindrical domains with edge singularities were considered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANISOTROPIC HYBRID MESHES  
dc.subject
EDGE AND VERTEX SINGULARITIES  
dc.subject
MIXED FINITE ELEMENT METHOD  
dc.subject
RAVIART–THOMAS SPACES  
dc.subject
VIRTUAL ELEMENT METHOD  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-16T12:38:29Z  
dc.identifier.eissn
1126-5434  
dc.journal.volume
56  
dc.journal.number
2  
dc.journal.pagination
1-34  
dc.journal.pais
Italia  
dc.description.fil
Fil: Jawtuschenko, Alexis Boris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.journal.title
Calcolo  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10092-019-0303-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10092-019-0303-x