Mostrar el registro sencillo del ítem
dc.contributor.author
Jawtuschenko, Alexis Boris
dc.contributor.author
Lombardi, Ariel Luis
dc.date.available
2022-03-29T02:07:02Z
dc.date.issued
2019-06
dc.identifier.citation
Jawtuschenko, Alexis Boris; Lombardi, Ariel Luis; A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes; Springer; Calcolo; 56; 2; 6-2019; 1-34
dc.identifier.issn
0008-0624
dc.identifier.uri
http://hdl.handle.net/11336/153974
dc.description.abstract
A Virtual Element Method is introduced for the mixed approximation of a simple model problem for the Laplace operator on a polyhedron. The method is fully analysed when the meshes are made up of triangular right prisms, pyramids and tetrahedra. The local discrete spaces coincide with the lowest order Raviart-Thomas spaces on tetrahedral and triangular right prismatic elements, and extend them to pyramidal elements. The discrete scheme is well posed and optimal interpolation error estimates are proved on meshes which allow for anisotropic elements. In particular, local interpolation error estimates for the discrete element space are optimal and anisotropic on anisotropic right prisms. Furthermore, a discretization of the model problem in the presence of edge and vertex singularities is analysed for the proposed method on a family of suitably designed graded meshes, and optimal estimates for the approximation error are obtained, extending in this way the results of [Farhloul, Nicaise, Paquet, ESAIM: M2AN 35 (2001) 907–920] where cylindrical domains with edge singularities were considered.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANISOTROPIC HYBRID MESHES
dc.subject
EDGE AND VERTEX SINGULARITIES
dc.subject
MIXED FINITE ELEMENT METHOD
dc.subject
RAVIART–THOMAS SPACES
dc.subject
VIRTUAL ELEMENT METHOD
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-16T12:38:29Z
dc.identifier.eissn
1126-5434
dc.journal.volume
56
dc.journal.number
2
dc.journal.pagination
1-34
dc.journal.pais
Italia
dc.description.fil
Fil: Jawtuschenko, Alexis Boris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.journal.title
Calcolo
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10092-019-0303-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10092-019-0303-x
Archivos asociados