Artículo
A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes
Fecha de publicación:
06/2019
Editorial:
Springer
Revista:
Calcolo
ISSN:
0008-0624
e-ISSN:
1126-5434
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A Virtual Element Method is introduced for the mixed approximation of a simple model problem for the Laplace operator on a polyhedron. The method is fully analysed when the meshes are made up of triangular right prisms, pyramids and tetrahedra. The local discrete spaces coincide with the lowest order Raviart-Thomas spaces on tetrahedral and triangular right prismatic elements, and extend them to pyramidal elements. The discrete scheme is well posed and optimal interpolation error estimates are proved on meshes which allow for anisotropic elements. In particular, local interpolation error estimates for the discrete element space are optimal and anisotropic on anisotropic right prisms. Furthermore, a discretization of the model problem in the presence of edge and vertex singularities is analysed for the proposed method on a family of suitably designed graded meshes, and optimal estimates for the approximation error are obtained, extending in this way the results of [Farhloul, Nicaise, Paquet, ESAIM: M2AN 35 (2001) 907–920] where cylindrical domains with edge singularities were considered.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Jawtuschenko, Alexis Boris; Lombardi, Ariel Luis; A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes; Springer; Calcolo; 56; 2; 6-2019; 1-34
Compartir
Altmétricas