Artículo
Classification of ASR Word Hypotheses using prosodic information and resampling of training data
Fecha de publicación:
07/2013
Editorial:
Planta Piloto de Ingeniería Química
Revista:
Latin American Applied Research
ISSN:
0327-0793
e-ISSN:
1851-8796
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we propose a novel re-sampling method based on word lattice information and we use prosodic cues with support vector machines for classification. The idea is to consider word recognition as a two-class classification problem, which considers the word hypotheses in the lattice of a standard recognizer either as True or False employing prosodic information. The technique developed in this paper was applied to set of words extracted from a continuous speech database. Our experimental results show that the method allows obtaining average word hypotheses recognition rate of 82%.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; López-Cózar, R.; Classification of ASR Word Hypotheses using prosodic information and resampling of training data; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 3; 7-2013; 1-5
Compartir