Artículo
Data-driven edge detectors for seismic data interpretation
Fecha de publicación:
12/2021
Editorial:
Society of Exploration Geophysicists
Revista:
Geophysics
ISSN:
0016-8033
e-ISSN:
1942-2156
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We have developed a novel method to assist in seismic interpretation. The algorithm learns data-driven edge detectors for structure enhancement when applied to time slices of 3D poststack seismic data. We obtain the operators by distilling the local and structural information retrieved from patches taken randomly from the input time slices. The filters conform to an orthogonal family that behaves as structureaware Sobel-like edge detectors, and the user can set their size and number. The results from marine Canada and New Zealand 3D seismic data demonstrate that our algorithm allows the semblance attribute to improve the delineation of subsurface channels. This fact is further supported by testing the method with realistic synthetic 2D and 3D data sets containing channeling and meandering systems. We contrast the results with standard plain Sobel filtering, multidirectional Sobel filters of variable size, and the dip-oriented plane-wave destruction Sobel attribute. Our method gives results that are comparable or superior to those of Sobel-based approaches. In addition, the obtained filters can adapt to the geologic structures present in each time slice, which reduces the number of unwanted artifacts in the final product.
Palabras clave:
Algorithm
,
Filtering
,
Edge detection
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Gómez, Julián Luis; Gelis, Lucía E. N.; Velis, Danilo Ruben; Data-driven edge detectors for seismic data interpretation; Society of Exploration Geophysicists; Geophysics; 86; 6; 12-2021; 059-068
Compartir
Altmétricas