Mostrar el registro sencillo del ítem

dc.contributor.author
Gómez, Julián Luis  
dc.contributor.author
Gelis, Lucía E. N.  
dc.contributor.author
Velis, Danilo Ruben  
dc.date.available
2022-03-17T03:05:28Z  
dc.date.issued
2021-12  
dc.identifier.citation
Gómez, Julián Luis; Gelis, Lucía E. N.; Velis, Danilo Ruben; Data-driven edge detectors for seismic data interpretation; Society of Exploration Geophysicists; Geophysics; 86; 6; 12-2021; 059-068  
dc.identifier.issn
0016-8033  
dc.identifier.uri
http://hdl.handle.net/11336/153476  
dc.description.abstract
We have developed a novel method to assist in seismic interpretation. The algorithm learns data-driven edge detectors for structure enhancement when applied to time slices of 3D poststack seismic data. We obtain the operators by distilling the local and structural information retrieved from patches taken randomly from the input time slices. The filters conform to an orthogonal family that behaves as structureaware Sobel-like edge detectors, and the user can set their size and number. The results from marine Canada and New Zealand 3D seismic data demonstrate that our algorithm allows the semblance attribute to improve the delineation of subsurface channels. This fact is further supported by testing the method with realistic synthetic 2D and 3D data sets containing channeling and meandering systems. We contrast the results with standard plain Sobel filtering, multidirectional Sobel filters of variable size, and the dip-oriented plane-wave destruction Sobel attribute. Our method gives results that are comparable or superior to those of Sobel-based approaches. In addition, the obtained filters can adapt to the geologic structures present in each time slice, which reduces the number of unwanted artifacts in the final product.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society of Exploration Geophysicists  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Algorithm  
dc.subject
Filtering  
dc.subject
Edge detection  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Data-driven edge detectors for seismic data interpretation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-14T21:05:31Z  
dc.identifier.eissn
1942-2156  
dc.journal.volume
86  
dc.journal.number
6  
dc.journal.pagination
059-068  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Tulsa  
dc.description.fil
Fil: Gómez, Julián Luis. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Gelis, Lucía E. N.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Observatorio Astronómico de La Plata - Sede Central; Argentina  
dc.description.fil
Fil: Velis, Danilo Ruben. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
Geophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.geoscienceworld.org/geophysics/article/86/6/o59/608496/data-driven-edge-detectors-for-seismic-data  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1190/geo2020-0759.1