Mostrar el registro sencillo del ítem

dc.contributor.author
Caiafa, César Federico  
dc.contributor.other
Aldroubi, Akram  
dc.contributor.other
Cabrelli, Carlos  
dc.date.available
2022-03-16T01:12:47Z  
dc.date.issued
2013  
dc.identifier.citation
Reconstruction of Multiway Arrays from Incomplete Information Using the Tucker Tensor Decomposition; New Trends in Applied Harmonic Analysis Sparse Representations, Compressed Sensing and Multifractal Analysis (CIMPA 2013); Mar del Plata; Argentina; 2013; 1-1  
dc.identifier.uri
http://hdl.handle.net/11336/153408  
dc.description.abstract
Tensor decomposition models for multidimensional datasets (multiway arrays) have a long history in Mathematics and applied sciences. While these models have recently been applied to multidimensional signal processing, they were developed independently of the theory of sparse representations and Compressed Sensing (CS). We discuss and illustrate recent results revealing connections among tensor decompositions models, recovery of low-rank multidimensional signals and CS theory. It is shown that, if a multidimensional signal has a good low rank or sparse multilinear representation, in the sense of the Tucker decomposition model, then it can be reconstructed from incomplete measurements. We discuss reconstructions methods for the cases where only a subset of fibers (mode-n vectors) in each dimension of the signal are available (Fiber Sampling Tensor Decomposition - FSTD), or when only the values of a limited set of entries are known (Tensor completion or multidimensional inpainting problem) or when measurements are given in a compressed multilinear format (Kronecker CS). We illustrate these methods by computer simulations taken on real world multidimensional signals including Magnetic Resonance Imaging (MRI) datasets and Hyperspectral images of natural scenes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universidad de Buenos Aires  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Tensors  
dc.subject
Compressed Sensing  
dc.subject
Multidimensional Signals  
dc.subject
Tucker decomposition  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Reconstruction of Multiway Arrays from Incomplete Information Using the Tucker Tensor Decomposition  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-01-05T18:26:41Z  
dc.journal.pagination
1-1  
dc.journal.pais
Argentina  
dc.journal.ciudad
Mar del Plata  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.univie.ac.at/nuhag-php/dateien/talks/Caiafa_2013-04_Abstract.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.univie.ac.at/nuhag-php/event_NEW/make.php?event=cimpa13  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Workshop  
dc.description.nombreEvento
New Trends in Applied Harmonic Analysis Sparse Representations, Compressed Sensing and Multifractal Analysis (CIMPA 2013)  
dc.date.evento
2013-08-05  
dc.description.ciudadEvento
Mar del Plata  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad de Buneos Aires  
dc.source.libro
Proceedings of CIMPA 2013  
dc.date.eventoHasta
2013-08-16  
dc.type
Workshop