Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Reconstruction of Multiway Arrays from Incomplete Information Using the Tucker Tensor Decomposition

Caiafa, César FedericoIcon
Colaboradores: Aldroubi, Akram; Cabrelli, Carlos
Tipo del evento: Workshop
Nombre del evento: New Trends in Applied Harmonic Analysis Sparse Representations, Compressed Sensing and Multifractal Analysis (CIMPA 2013)
Fecha del evento: 05/08/2013
Institución Organizadora: Universidad de Buneos Aires;
Título del Libro: Proceedings of CIMPA 2013
Editorial: Universidad de Buenos Aires
Idioma: Inglés
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Tensor decomposition models for multidimensional datasets (multiway arrays) have a long history in Mathematics and applied sciences. While these models have recently been applied to multidimensional signal processing, they were developed independently of the theory of sparse representations and Compressed Sensing (CS). We discuss and illustrate recent results revealing connections among tensor decompositions models, recovery of low-rank multidimensional signals and CS theory. It is shown that, if a multidimensional signal has a good low rank or sparse multilinear representation, in the sense of the Tucker decomposition model, then it can be reconstructed from incomplete measurements. We discuss reconstructions methods for the cases where only a subset of fibers (mode-n vectors) in each dimension of the signal are available (Fiber Sampling Tensor Decomposition - FSTD), or when only the values of a limited set of entries are known (Tensor completion or multidimensional inpainting problem) or when measurements are given in a compressed multilinear format (Kronecker CS). We illustrate these methods by computer simulations taken on real world multidimensional signals including Magnetic Resonance Imaging (MRI) datasets and Hyperspectral images of natural scenes.
Palabras clave: Tensors , Compressed Sensing , Multidimensional Signals , Tucker decomposition
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 54.90Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/153408
URL: http://www.univie.ac.at/nuhag-php/dateien/talks/Caiafa_2013-04_Abstract.pdf
URL: https://www.univie.ac.at/nuhag-php/event_NEW/make.php?event=cimpa13
Colecciones
Eventos(IAR)
Eventos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Reconstruction of Multiway Arrays from Incomplete Information Using the Tucker Tensor Decomposition; New Trends in Applied Harmonic Analysis Sparse Representations, Compressed Sensing and Multifractal Analysis (CIMPA 2013); Mar del Plata; Argentina; 2013; 1-1
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES