Mostrar el registro sencillo del ítem
dc.contributor.author
Kröhling, Dan Ezequiel

dc.contributor.author
Chiotti, Omar Juan Alfredo

dc.contributor.author
Martínez, Ernesto Carlos

dc.date.available
2022-03-15T10:55:04Z
dc.date.issued
2021-01
dc.identifier.citation
Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; A context-aware approach to automated negotiation using reinforcement learning; Elsevier; Advanced Engineering Informatics; 47; 1-2021; 1-17
dc.identifier.issn
1474-0346
dc.identifier.uri
http://hdl.handle.net/11336/153386
dc.description.abstract
Agents negotiate depending on individual perceptions of facts, events, trends and special circumstances that define the negotiation context. The negotiation context affects in different ways each agent's preferences, bargaining strategies and resulting benefits, given the possible negotiation outcomes. Despite the relevance of the context, the existing literature on automated negotiation is scarce about how to account for it in learning and adapting negotiation strategies. In this paper, a novel contextual representation of the negotiation setting is proposed, where an agent resorts to private and public data to negotiate using an individual perception of its necessity and risk. A context-aware negotiation agent that learns through Self-Play and Reinforcement Learning (RL) how to use key contextual information to gain a competitive edge over its opponents is discussed in two levels of temporal abstraction. Learning to negotiate in an Eco-Industrial Park (EIP) is presented as a case study. In the Peer-to-Peer (P2P) market of an EIP, two instances of context-aware agents, in the roles of a buyer and a seller, are set to bilaterally negotiate exchanges of electrical energy surpluses over a discrete timeline to demonstrate that they can profit from learning to choose a negotiation strategy while selfishly accounting for contextual information under different circumstances in a data-driven way. Furthermore, several negotiation episodes are conducted in the proposed EIP between a context-aware agent and other types of agents proposed in the existing literature. Results obtained highlight that context-aware agents do not only reap selfishly higher benefits, but also promote social welfare as they resort to contextual information while learning to negotiate.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AGENT INTELLIGENCE
dc.subject
AUTOMATED NEGOTIATION
dc.subject
CONTEXT-AWARE AGENTS
dc.subject
PEER-TO-PEER MARKETS
dc.subject
REINFORCEMENT LEARNING
dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A context-aware approach to automated negotiation using reinforcement learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-08T21:57:18Z
dc.identifier.eissn
1873-5320
dc.journal.volume
47
dc.journal.pagination
1-17
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Advanced Engineering Informatics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1474034620301981
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aei.2020.101229
Archivos asociados