Mostrar el registro sencillo del ítem

dc.contributor.author
Kröhling, Dan Ezequiel  
dc.contributor.author
Chiotti, Omar Juan Alfredo  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2022-03-15T10:55:04Z  
dc.date.issued
2021-01  
dc.identifier.citation
Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; A context-aware approach to automated negotiation using reinforcement learning; Elsevier; Advanced Engineering Informatics; 47; 1-2021; 1-17  
dc.identifier.issn
1474-0346  
dc.identifier.uri
http://hdl.handle.net/11336/153386  
dc.description.abstract
Agents negotiate depending on individual perceptions of facts, events, trends and special circumstances that define the negotiation context. The negotiation context affects in different ways each agent's preferences, bargaining strategies and resulting benefits, given the possible negotiation outcomes. Despite the relevance of the context, the existing literature on automated negotiation is scarce about how to account for it in learning and adapting negotiation strategies. In this paper, a novel contextual representation of the negotiation setting is proposed, where an agent resorts to private and public data to negotiate using an individual perception of its necessity and risk. A context-aware negotiation agent that learns through Self-Play and Reinforcement Learning (RL) how to use key contextual information to gain a competitive edge over its opponents is discussed in two levels of temporal abstraction. Learning to negotiate in an Eco-Industrial Park (EIP) is presented as a case study. In the Peer-to-Peer (P2P) market of an EIP, two instances of context-aware agents, in the roles of a buyer and a seller, are set to bilaterally negotiate exchanges of electrical energy surpluses over a discrete timeline to demonstrate that they can profit from learning to choose a negotiation strategy while selfishly accounting for contextual information under different circumstances in a data-driven way. Furthermore, several negotiation episodes are conducted in the proposed EIP between a context-aware agent and other types of agents proposed in the existing literature. Results obtained highlight that context-aware agents do not only reap selfishly higher benefits, but also promote social welfare as they resort to contextual information while learning to negotiate.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AGENT INTELLIGENCE  
dc.subject
AUTOMATED NEGOTIATION  
dc.subject
CONTEXT-AWARE AGENTS  
dc.subject
PEER-TO-PEER MARKETS  
dc.subject
REINFORCEMENT LEARNING  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A context-aware approach to automated negotiation using reinforcement learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-08T21:57:18Z  
dc.identifier.eissn
1873-5320  
dc.journal.volume
47  
dc.journal.pagination
1-17  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Advanced Engineering Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1474034620301981  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aei.2020.101229