Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A context-aware approach to automated negotiation using reinforcement learning

Kröhling, Dan EzequielIcon ; Chiotti, Omar Juan AlfredoIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 01/2021
Editorial: Elsevier
Revista: Advanced Engineering Informatics
ISSN: 1474-0346
e-ISSN: 1873-5320
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Agents negotiate depending on individual perceptions of facts, events, trends and special circumstances that define the negotiation context. The negotiation context affects in different ways each agent's preferences, bargaining strategies and resulting benefits, given the possible negotiation outcomes. Despite the relevance of the context, the existing literature on automated negotiation is scarce about how to account for it in learning and adapting negotiation strategies. In this paper, a novel contextual representation of the negotiation setting is proposed, where an agent resorts to private and public data to negotiate using an individual perception of its necessity and risk. A context-aware negotiation agent that learns through Self-Play and Reinforcement Learning (RL) how to use key contextual information to gain a competitive edge over its opponents is discussed in two levels of temporal abstraction. Learning to negotiate in an Eco-Industrial Park (EIP) is presented as a case study. In the Peer-to-Peer (P2P) market of an EIP, two instances of context-aware agents, in the roles of a buyer and a seller, are set to bilaterally negotiate exchanges of electrical energy surpluses over a discrete timeline to demonstrate that they can profit from learning to choose a negotiation strategy while selfishly accounting for contextual information under different circumstances in a data-driven way. Furthermore, several negotiation episodes are conducted in the proposed EIP between a context-aware agent and other types of agents proposed in the existing literature. Results obtained highlight that context-aware agents do not only reap selfishly higher benefits, but also promote social welfare as they resort to contextual information while learning to negotiate.
Palabras clave: AGENT INTELLIGENCE , AUTOMATED NEGOTIATION , CONTEXT-AWARE AGENTS , PEER-TO-PEER MARKETS , REINFORCEMENT LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.315Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/153386
URL: https://www.sciencedirect.com/science/article/pii/S1474034620301981
DOI: http://dx.doi.org/10.1016/j.aei.2020.101229
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; A context-aware approach to automated negotiation using reinforcement learning; Elsevier; Advanced Engineering Informatics; 47; 1-2021; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES