Mostrar el registro sencillo del ítem
dc.contributor.author
Kittlein, Marcelo Javier
dc.contributor.author
Mora, Matias Sebastian
dc.contributor.author
Mapelli, Fernando Javier
dc.contributor.author
Austrich, Ailin
dc.contributor.author
Gaggiotti, Oscar E.
dc.date.available
2022-03-14T11:25:05Z
dc.date.issued
2021-11
dc.identifier.citation
Kittlein, Marcelo Javier; Mora, Matias Sebastian; Mapelli, Fernando Javier; Austrich, Ailin; Gaggiotti, Oscar E.; Deep learning and satellite imagery predict genetic diversity and differentiation; Wiley; Methods in Ecology and Evolution; 13; 3; 11-2021; 711-721
dc.identifier.issn
2041-210X
dc.identifier.uri
http://hdl.handle.net/11336/153316
dc.description.abstract
During the last decade, convolutional neural networks (CNNs) have revolutionised the application of deep learning (DL) methods to classification tasks and object recognition. These procedures can capture key features of image data that are not easily visible to the human eye and use them to classify and predict outcomes with exceptional precision. Here, we show for the first time that CNNs provide highly accurate predictions for small-scale genetic differentiation and diversity in Ctenomys australis, a subterranean rodent from central Argentina. Using microsatellite genotypes and high-resolution satellite imagery, we trained a simple CNN to predict local FST and mean allele richness. To identify landscape features with high impact on predicted values, we applied species distribution models to obtain the distribution of suitable habitat. Subsequent use of a machine learning algorithm (random forest) allowed us to identify the attributes that contribute the most to predictions of population genetic metrics. Predictions obtained from the CNN accounted for more than 98% of the variation observed both in FST and mean allele richness values. Random forest regression on landscape metrics indicated that features involving connectivity and consistent prevalence of suitable habitat promoted genetic diversity and reduced genetic differentiation in C. australis. Validation with synthetic data via simulations of genetic differentiation based on the landscape structure of the study area and of a nearby area showed that DL models are able to capture complex relationships between actual data and synthetic data in the same landscape and between synthetic data generated under different landscapes. Our approach represents an objective and powerful approach to landscape genetics because it can extract information from patterns that are not easily identified by humans. Spatial predictions from the CNN may assist in the identification of areas of interest for biodiversity conservation and management of populations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BIODIVERSITY PREDICTION
dc.subject
COASTAL DUNES
dc.subject
CONVOLUTIONAL NEURAL NETWORKS
dc.subject
CTENOMYS AUSTRALIS
dc.subject
DEEP LEARNING
dc.subject
GENETIC DIFFERENTIATION
dc.subject
LANDSCAPE GENETICS
dc.subject
SUBTERRANEAN RODENTS
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Deep learning and satellite imagery predict genetic diversity and differentiation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-02T15:48:44Z
dc.journal.volume
13
dc.journal.number
3
dc.journal.pagination
711-721
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Kittlein, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
dc.description.fil
Fil: Mora, Matias Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
dc.description.fil
Fil: Mapelli, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina
dc.description.fil
Fil: Austrich, Ailin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
dc.description.fil
Fil: Gaggiotti, Oscar E.. University of St. Andrews; Reino Unido
dc.journal.title
Methods in Ecology and Evolution
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/2041-210X.13775
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13775
Archivos asociados