Mostrar el registro sencillo del ítem

dc.contributor.author
Kittlein, Marcelo Javier  
dc.contributor.author
Mora, Matias Sebastian  
dc.contributor.author
Mapelli, Fernando Javier  
dc.contributor.author
Austrich, Ailin  
dc.contributor.author
Gaggiotti, Oscar E.  
dc.date.available
2022-03-14T11:25:05Z  
dc.date.issued
2021-11  
dc.identifier.citation
Kittlein, Marcelo Javier; Mora, Matias Sebastian; Mapelli, Fernando Javier; Austrich, Ailin; Gaggiotti, Oscar E.; Deep learning and satellite imagery predict genetic diversity and differentiation; Wiley; Methods in Ecology and Evolution; 13; 3; 11-2021; 711-721  
dc.identifier.issn
2041-210X  
dc.identifier.uri
http://hdl.handle.net/11336/153316  
dc.description.abstract
During the last decade, convolutional neural networks (CNNs) have revolutionised the application of deep learning (DL) methods to classification tasks and object recognition. These procedures can capture key features of image data that are not easily visible to the human eye and use them to classify and predict outcomes with exceptional precision. Here, we show for the first time that CNNs provide highly accurate predictions for small-scale genetic differentiation and diversity in Ctenomys australis, a subterranean rodent from central Argentina. Using microsatellite genotypes and high-resolution satellite imagery, we trained a simple CNN to predict local FST and mean allele richness. To identify landscape features with high impact on predicted values, we applied species distribution models to obtain the distribution of suitable habitat. Subsequent use of a machine learning algorithm (random forest) allowed us to identify the attributes that contribute the most to predictions of population genetic metrics. Predictions obtained from the CNN accounted for more than 98% of the variation observed both in FST and mean allele richness values. Random forest regression on landscape metrics indicated that features involving connectivity and consistent prevalence of suitable habitat promoted genetic diversity and reduced genetic differentiation in C. australis. Validation with synthetic data via simulations of genetic differentiation based on the landscape structure of the study area and of a nearby area showed that DL models are able to capture complex relationships between actual data and synthetic data in the same landscape and between synthetic data generated under different landscapes. Our approach represents an objective and powerful approach to landscape genetics because it can extract information from patterns that are not easily identified by humans. Spatial predictions from the CNN may assist in the identification of areas of interest for biodiversity conservation and management of populations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIODIVERSITY PREDICTION  
dc.subject
COASTAL DUNES  
dc.subject
CONVOLUTIONAL NEURAL NETWORKS  
dc.subject
CTENOMYS AUSTRALIS  
dc.subject
DEEP LEARNING  
dc.subject
GENETIC DIFFERENTIATION  
dc.subject
LANDSCAPE GENETICS  
dc.subject
SUBTERRANEAN RODENTS  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Deep learning and satellite imagery predict genetic diversity and differentiation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-02T15:48:44Z  
dc.journal.volume
13  
dc.journal.number
3  
dc.journal.pagination
711-721  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Kittlein, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina  
dc.description.fil
Fil: Mora, Matias Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina  
dc.description.fil
Fil: Mapelli, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina  
dc.description.fil
Fil: Austrich, Ailin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina  
dc.description.fil
Fil: Gaggiotti, Oscar E.. University of St. Andrews; Reino Unido  
dc.journal.title
Methods in Ecology and Evolution  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/2041-210X.13775  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13775