Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Deep learning and satellite imagery predict genetic diversity and differentiation

Kittlein, Marcelo JavierIcon ; Mora, Matias SebastianIcon ; Mapelli, Fernando JavierIcon ; Austrich, AilinIcon ; Gaggiotti, Oscar E.
Fecha de publicación: 11/2021
Editorial: Wiley
Revista: Methods in Ecology and Evolution
ISSN: 2041-210X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Biológicas

Resumen

During the last decade, convolutional neural networks (CNNs) have revolutionised the application of deep learning (DL) methods to classification tasks and object recognition. These procedures can capture key features of image data that are not easily visible to the human eye and use them to classify and predict outcomes with exceptional precision. Here, we show for the first time that CNNs provide highly accurate predictions for small-scale genetic differentiation and diversity in Ctenomys australis, a subterranean rodent from central Argentina. Using microsatellite genotypes and high-resolution satellite imagery, we trained a simple CNN to predict local FST and mean allele richness. To identify landscape features with high impact on predicted values, we applied species distribution models to obtain the distribution of suitable habitat. Subsequent use of a machine learning algorithm (random forest) allowed us to identify the attributes that contribute the most to predictions of population genetic metrics. Predictions obtained from the CNN accounted for more than 98% of the variation observed both in FST and mean allele richness values. Random forest regression on landscape metrics indicated that features involving connectivity and consistent prevalence of suitable habitat promoted genetic diversity and reduced genetic differentiation in C. australis. Validation with synthetic data via simulations of genetic differentiation based on the landscape structure of the study area and of a nearby area showed that DL models are able to capture complex relationships between actual data and synthetic data in the same landscape and between synthetic data generated under different landscapes. Our approach represents an objective and powerful approach to landscape genetics because it can extract information from patterns that are not easily identified by humans. Spatial predictions from the CNN may assist in the identification of areas of interest for biodiversity conservation and management of populations.
Palabras clave: BIODIVERSITY PREDICTION , COASTAL DUNES , CONVOLUTIONAL NEURAL NETWORKS , CTENOMYS AUSTRALIS , DEEP LEARNING , GENETIC DIFFERENTIATION , LANDSCAPE GENETICS , SUBTERRANEAN RODENTS
Ver el registro completo
 
Archivos asociados
Tamaño: 3.338Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/153316
DOI: http://dx.doi.org/10.1111/2041-210X.13775
URL: https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13775
Colecciones
Articulos(IIMYC)
Articulos de INSTITUTO DE INVESTIGACIONES MARINAS Y COSTERAS
Articulos(MACNBR)
Articulos de MUSEO ARG.DE CS.NAT "BERNARDINO RIVADAVIA"
Citación
Kittlein, Marcelo Javier; Mora, Matias Sebastian; Mapelli, Fernando Javier; Austrich, Ailin; Gaggiotti, Oscar E.; Deep learning and satellite imagery predict genetic diversity and differentiation; Wiley; Methods in Ecology and Evolution; 13; 3; 11-2021; 711-721
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES