Mostrar el registro sencillo del ítem
dc.contributor.author
Marelli, Damian Edgardo

dc.contributor.author
Fu, Minyue
dc.date.available
2022-02-18T15:58:42Z
dc.date.issued
2020-08
dc.identifier.citation
Marelli, Damian Edgardo; Fu, Minyue; Asymptotic properties of statistical estimators using multivariate Chi-squared measurements; Academic Press Inc Elsevier Science; Digital Signal Processing; 103; 102754; 8-2020; 1-16
dc.identifier.issn
1051-2004
dc.identifier.uri
http://hdl.handle.net/11336/152313
dc.description.abstract
This paper studies the problem of estimating a parameter vector from measurements having a multivariate chi-squared distribution. Maximum likelihood estimation in this setting is unfeasible because the multivariate chi-squared distribution has no closed form expression. The typical approach to go around this consists in considering a sub-optimal solution by replacing the chi-squared distribution with a normal one. We investigate the theoretical properties of this approximation as the number of measurements approach infinity. More precisely, we show that this approximation is strongly consistency, asymptotically normal and asymptotically efficient. We consider a source localization problem as a case study.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ASYMPTOTIC STATISTICAL PROPERTIES
dc.subject
CRAMÉR-RAO LOWER BOUND
dc.subject
MAXIMUM LIKELIHOOD ESTIMATION
dc.subject
MULTIVARIATE CHI-SQUARED DISTRIBUTION
dc.subject
PARAMETER ESTIMATION
dc.subject.classification
Estadística y Probabilidad

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Asymptotic properties of statistical estimators using multivariate Chi-squared measurements
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-08-19T19:53:47Z
dc.journal.volume
103
dc.journal.number
102754
dc.journal.pagination
1-16
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Guandong University of Technology; China
dc.description.fil
Fil: Fu, Minyue. Universidad de Newcastle; Australia. Guandong University of Technology; China
dc.journal.title
Digital Signal Processing

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dsp.2020.102754
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1051200420300993
Archivos asociados