Artículo
Asymptotic properties of statistical estimators using multivariate Chi-squared measurements
Fecha de publicación:
08/2020
Editorial:
Academic Press Inc Elsevier Science
Revista:
Digital Signal Processing
ISSN:
1051-2004
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper studies the problem of estimating a parameter vector from measurements having a multivariate chi-squared distribution. Maximum likelihood estimation in this setting is unfeasible because the multivariate chi-squared distribution has no closed form expression. The typical approach to go around this consists in considering a sub-optimal solution by replacing the chi-squared distribution with a normal one. We investigate the theoretical properties of this approximation as the number of measurements approach infinity. More precisely, we show that this approximation is strongly consistency, asymptotically normal and asymptotically efficient. We consider a source localization problem as a case study.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Marelli, Damian Edgardo; Fu, Minyue; Asymptotic properties of statistical estimators using multivariate Chi-squared measurements; Academic Press Inc Elsevier Science; Digital Signal Processing; 103; 102754; 8-2020; 1-16
Compartir
Altmétricas