Mostrar el registro sencillo del ítem
dc.contributor.author
Pontes, Aline S.
dc.contributor.author
Araújo, Alisson
dc.contributor.author
Marinho, Weverton
dc.contributor.author
Goncalves Dias Diniz, Paulo Henrique

dc.contributor.author
Araújo Gomes, Adriano
dc.contributor.author
Goicoechea, Hector Casimiro

dc.contributor.author
Silva, Edvan C.
dc.contributor.author
Araújo, Mario C.U.
dc.date.available
2022-02-14T12:35:56Z
dc.date.issued
2020-08
dc.identifier.citation
Pontes, Aline S.; Araújo, Alisson; Marinho, Weverton; Goncalves Dias Diniz, Paulo Henrique; Araújo Gomes, Adriano; et al.; Ant colony optimization for variable selection in discriminant linear analysis; John Wiley & Sons Ltd; Journal of Chemometrics; 34; 12; 8-2020; 1-12
dc.identifier.issn
0886-9383
dc.identifier.uri
http://hdl.handle.net/11336/151913
dc.description.abstract
A new algorithm using ant colony optimization (ACO) for selection of variables in linear discriminant analysis (LDA) is presented. The role of ACO is explored in the context of LDA classification in which spectral variable multicollinearity is a known cause of generalization problems. The proposed ACO-LDA presents a metaheuristic that mimics the ant's cooperative behavior, randomly depositing pheromones at vector elements corresponding to the most relevant variables. Such cooperative ant-like behavior, which is absent in the genetic algorithm, increases the probability of discarding noninformative variables, favoring construction of more parsimonious models than genetic algorithm–linear discriminate analysis (GA-LDA). The classification performance of ACO-LDA is assessed in two case studies: (i) classification of edible vegetable oils (with respect to base oil) via ultraviolet–visible (UV-Vis) spectrometry and (ii) simultaneous classification of tea samples with respect to type and geographic origin via near-infrared (NIR) spectrometry. In the first study, ACO-LDA was tested in a data set involving wide absorption bands in the UV region with low-resolution and strong spectral overlapping. In the second study, its capacity to manage a data matrix with high dimensionality was evaluated. In both studies, ACO-LDA selected a small subset of variables, which led to correct classifications for almost all of the samples, achieving a performance level similar to the well-established partial least squares–discriminant analysis (PLS-DA), and considerably better than GA-LDA. The use of ACO to select LDA classification variables can minimize generalization problems commonly associated with multicollinearity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANT COLONY OPTIMIZATION
dc.subject
EDIBLE OIL AND TEA
dc.subject
LINEAR DISCRIMINANT ANALYSIS
dc.subject
NEAR-INFRARED AND ULTRAVIOLET-VISIBLE SPECTROMETRY
dc.subject
VARIABLE SELECTION
dc.subject.classification
Química Analítica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Ant colony optimization for variable selection in discriminant linear analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T14:08:48Z
dc.journal.volume
34
dc.journal.number
12
dc.journal.pagination
1-12
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Pontes, Aline S.. Universidade Estadual Da Paraiba.; Brasil
dc.description.fil
Fil: Araújo, Alisson. Universidade Estadual Da Paraiba.; Brasil
dc.description.fil
Fil: Marinho, Weverton. Universidade Estadual Da Paraiba.; Brasil
dc.description.fil
Fil: Goncalves Dias Diniz, Paulo Henrique. Universidade Estadual Da Paraiba.; Brasil
dc.description.fil
Fil: Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Silva, Edvan C.. Universidade Estadual Da Paraiba.; Brasil
dc.description.fil
Fil: Araújo, Mario C.U.. Universidade Estadual Da Paraiba.; Brasil
dc.journal.title
Journal of Chemometrics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.3292
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cem.3292
Archivos asociados