Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Ant colony optimization for variable selection in discriminant linear analysis

Pontes, Aline S.; Araújo, Alisson; Marinho, Weverton; Goncalves Dias Diniz, Paulo Henrique; Araújo Gomes, Adriano; Goicoechea, Hector CasimiroIcon ; Silva, Edvan C.; Araújo, Mario C.U.
Fecha de publicación: 08/2020
Editorial: John Wiley & Sons Ltd
Revista: Journal of Chemometrics
ISSN: 0886-9383
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

A new algorithm using ant colony optimization (ACO) for selection of variables in linear discriminant analysis (LDA) is presented. The role of ACO is explored in the context of LDA classification in which spectral variable multicollinearity is a known cause of generalization problems. The proposed ACO-LDA presents a metaheuristic that mimics the ant's cooperative behavior, randomly depositing pheromones at vector elements corresponding to the most relevant variables. Such cooperative ant-like behavior, which is absent in the genetic algorithm, increases the probability of discarding noninformative variables, favoring construction of more parsimonious models than genetic algorithm–linear discriminate analysis (GA-LDA). The classification performance of ACO-LDA is assessed in two case studies: (i) classification of edible vegetable oils (with respect to base oil) via ultraviolet–visible (UV-Vis) spectrometry and (ii) simultaneous classification of tea samples with respect to type and geographic origin via near-infrared (NIR) spectrometry. In the first study, ACO-LDA was tested in a data set involving wide absorption bands in the UV region with low-resolution and strong spectral overlapping. In the second study, its capacity to manage a data matrix with high dimensionality was evaluated. In both studies, ACO-LDA selected a small subset of variables, which led to correct classifications for almost all of the samples, achieving a performance level similar to the well-established partial least squares–discriminant analysis (PLS-DA), and considerably better than GA-LDA. The use of ACO to select LDA classification variables can minimize generalization problems commonly associated with multicollinearity.
Palabras clave: ANT COLONY OPTIMIZATION , EDIBLE OIL AND TEA , LINEAR DISCRIMINANT ANALYSIS , NEAR-INFRARED AND ULTRAVIOLET-VISIBLE SPECTROMETRY , VARIABLE SELECTION
Ver el registro completo
 
Archivos asociados
Tamaño: 7.078Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/151913
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.3292
DOI: http://dx.doi.org/10.1002/cem.3292
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Pontes, Aline S.; Araújo, Alisson; Marinho, Weverton; Goncalves Dias Diniz, Paulo Henrique; Araújo Gomes, Adriano; et al.; Ant colony optimization for variable selection in discriminant linear analysis; John Wiley & Sons Ltd; Journal of Chemometrics; 34; 12; 8-2020; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES