Mostrar el registro sencillo del ítem

dc.contributor.author
Pinasco, Juan Pablo  
dc.contributor.author
Rodriguez Cartabia, Mauro  
dc.contributor.author
Saintier, Nicolas Bernard Claude  
dc.date.available
2022-02-11T12:43:56Z  
dc.date.issued
2021-01  
dc.identifier.citation
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; Evolutionary Game Theory in Mixed Strategies: From Microscopic Interactions to Kinetic Equations; American Institute of Mathematical Sciences; Kinetic And Related Models; 14; 1; 1-2021; 115-148  
dc.identifier.issn
1937-5077  
dc.identifier.uri
http://hdl.handle.net/11336/151872  
dc.description.abstract
In this work we propose a kinetic formulation for evolutionary game theory for zero sum games when the agents use mixed strategies. We start with a simple adaptive rule, where after an encounter each agent increases by a small amount h the probability of playing the successful pure strategy used in the match. We derive the Boltzmann equation which describes the macroscopic effects of this microscopical rule, and we obtain a first order, nonlocal, partial differential equation as the limit when h goes to zero. We study the relationship between this equation and the well known replicator equations, showing the equivalence between the concepts of Nash equilibria, stationary solutions of the partial differential equation, and the equilibria of the replicator equations. Finally, we relate the long-time behavior of solutions to the partial differential equation and the stability of the replicator equations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
KINETIC MODELS  
dc.subject
MEAN FIELD GAMES  
dc.subject
VOLUTIONARY GAME THEORY  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Evolutionary Game Theory in Mixed Strategies: From Microscopic Interactions to Kinetic Equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-25T15:02:36Z  
dc.identifier.eissn
1937-5093  
dc.journal.volume
14  
dc.journal.number
1  
dc.journal.pagination
115-148  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Kinetic And Related Models  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/krm.2020051  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/krm.2020051