Artículo
Evolutionary Game Theory in Mixed Strategies: From Microscopic Interactions to Kinetic Equations
Fecha de publicación:
01/2021
Editorial:
American Institute of Mathematical Sciences
Revista:
Kinetic And Related Models
ISSN:
1937-5077
e-ISSN:
1937-5093
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we propose a kinetic formulation for evolutionary game theory for zero sum games when the agents use mixed strategies. We start with a simple adaptive rule, where after an encounter each agent increases by a small amount h the probability of playing the successful pure strategy used in the match. We derive the Boltzmann equation which describes the macroscopic effects of this microscopical rule, and we obtain a first order, nonlocal, partial differential equation as the limit when h goes to zero. We study the relationship between this equation and the well known replicator equations, showing the equivalence between the concepts of Nash equilibria, stationary solutions of the partial differential equation, and the equilibria of the replicator equations. Finally, we relate the long-time behavior of solutions to the partial differential equation and the stability of the replicator equations.
Palabras clave:
KINETIC MODELS
,
MEAN FIELD GAMES
,
VOLUTIONARY GAME THEORY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; Evolutionary Game Theory in Mixed Strategies: From Microscopic Interactions to Kinetic Equations; American Institute of Mathematical Sciences; Kinetic And Related Models; 14; 1; 1-2021; 115-148
Compartir
Altmétricas