Mostrar el registro sencillo del ítem

dc.contributor.author
Murillo, Javier  
dc.contributor.author
Guillaume, S.  
dc.contributor.author
Spetale, Flavio Ezequiel  
dc.contributor.author
Tapia, E.  
dc.contributor.author
Bulacio, P.  
dc.date.available
2017-04-11T19:56:52Z  
dc.date.issued
2015-07  
dc.identifier.citation
Murillo, Javier; Guillaume, S.; Spetale, Flavio Ezequiel; Tapia, E.; Bulacio, P.; Set characterization-selection towards classification based on interaction index; Elsevier Science; Fuzzy Sets And Systems; 270; 7-2015; 74-89  
dc.identifier.issn
0165-0114  
dc.identifier.uri
http://hdl.handle.net/11336/15165  
dc.description.abstract
In many real world datasets both the individual and coordinated action of features may be relevant for class identification. In this paper, a computational strategy for relevant feature selection based on the characterization of redundant or complementary features is proposed. The characterization is achieved using fuzzy measures and an interaction index computed from fuzzy measure coefficients. Fuzzy measure identification requires raw data to be turned into confidence degrees. This key step is carried out considering the distributions of feature values across all the classes. Fuzzy measure coefficients are then estimated with an improved version of the Heuristic Least Mean Squares algorithm that includes an efficient management of untouched coefficients. Then, a generalization of the Shapley index for an arbitrary number of features is used. Simulations experiments on synthetic datasets are performed to study the behavior of this generalized interaction index. For extreme datasets, containing either redundant or complementary features as well as noise, the index value is defined by mathematical formula. This result is used to motivate feature selection guidelines that take into account feature interactions. Experimental results on benchmark datasets show that the proposal allows for the design of compact, interpretable and competitive classification models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Choquet  
dc.subject
Subset Characterization  
dc.subject
Hlms  
dc.subject
Generalized Shapley Index  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Set characterization-selection towards classification based on interaction index  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-11T17:43:31Z  
dc.journal.volume
270  
dc.journal.pagination
74-89  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Murillo, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Guillaume, S.. Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture; Francia  
dc.description.fil
Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Tapia, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Bulacio, P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.journal.title
Fuzzy Sets And Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://doi.org/10.1016/j.fss.2014.09.015  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0165011414004229