Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Set characterization-selection towards classification based on interaction index

Murillo, JavierIcon ; Guillaume, S.; Spetale, Flavio EzequielIcon ; Tapia, E.; Bulacio, P.
Fecha de publicación: 07/2015
Editorial: Elsevier Science
Revista: Fuzzy Sets And Systems
ISSN: 0165-0114
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

In many real world datasets both the individual and coordinated action of features may be relevant for class identification. In this paper, a computational strategy for relevant feature selection based on the characterization of redundant or complementary features is proposed. The characterization is achieved using fuzzy measures and an interaction index computed from fuzzy measure coefficients. Fuzzy measure identification requires raw data to be turned into confidence degrees. This key step is carried out considering the distributions of feature values across all the classes. Fuzzy measure coefficients are then estimated with an improved version of the Heuristic Least Mean Squares algorithm that includes an efficient management of untouched coefficients. Then, a generalization of the Shapley index for an arbitrary number of features is used. Simulations experiments on synthetic datasets are performed to study the behavior of this generalized interaction index. For extreme datasets, containing either redundant or complementary features as well as noise, the index value is defined by mathematical formula. This result is used to motivate feature selection guidelines that take into account feature interactions. Experimental results on benchmark datasets show that the proposal allows for the design of compact, interpretable and competitive classification models.
Palabras clave: Choquet , Subset Characterization , Hlms , Generalized Shapley Index
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 501.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/15165
DOI: http://doi.org/10.1016/j.fss.2014.09.015
URL: http://www.sciencedirect.com/science/article/pii/S0165011414004229
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Murillo, Javier; Guillaume, S.; Spetale, Flavio Ezequiel; Tapia, E.; Bulacio, P.; Set characterization-selection towards classification based on interaction index; Elsevier Science; Fuzzy Sets And Systems; 270; 7-2015; 74-89
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES