Mostrar el registro sencillo del ítem

dc.contributor.author
Dillon, B. M.  
dc.contributor.author
Faroughy, D. A.  
dc.contributor.author
Kamenik, J. F.  
dc.contributor.author
Szewc, Manuel  
dc.date.available
2022-02-08T01:37:19Z  
dc.date.issued
2020-10  
dc.identifier.citation
Dillon, B. M.; Faroughy, D. A.; Kamenik, J. F.; Szewc, Manuel; Learning the latent structure of collider events; Springer; Journal of High Energy Physics; 2020; 206; 10-2020; 1-48  
dc.identifier.issn
1029-8479  
dc.identifier.uri
http://hdl.handle.net/11336/151518  
dc.description.abstract
We describe a technique to learn the underlying structure of collider events directly from the data, without having a particular theoretical model in mind. It allows to infer aspects of the theoretical model that may have given rise to this structure, and can be used to cluster or classify the events for analysis purposes. The unsupervised machine-learning technique is based on the probabilistic (Bayesian) generative model of Latent Dirichlet Allocation. We pair the model with an approximate inference algorithm called Variational Inference, which we then use to extract the latent probability distributions describing the learned underlying structure of collider events. We provide a detailed systematic study of the technique using two example scenarios to learn the latent structure of di-jet event samples made up of QCD background events and either tt¯.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BEYOND STANDARD MODEL  
dc.subject
HADRON-HADRON SCATTERING (EXPERIMENTS)  
dc.subject
JET SUBSTRUCTURE  
dc.subject
JETS  
dc.subject
PARTICLE AND RESONANCE PRODUCTION  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning the latent structure of collider events  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-10-25T17:08:50Z  
dc.journal.volume
2020  
dc.journal.number
206  
dc.journal.pagination
1-48  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Dillon, B. M.. Institute Jo?ef Stefan; Eslovenia  
dc.description.fil
Fil: Faroughy, D. A.. Universitat Zurich; Suiza  
dc.description.fil
Fil: Kamenik, J. F.. Institute Jo?ef Stefan; Eslovenia. University of Ljubljana; Eslovenia  
dc.description.fil
Fil: Szewc, Manuel. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of High Energy Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/JHEP10(2020)206  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP10(2020)206