Artículo
Learning the latent structure of collider events
Fecha de publicación:
10/2020
Editorial:
Springer
Revista:
Journal of High Energy Physics
ISSN:
1029-8479
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We describe a technique to learn the underlying structure of collider events directly from the data, without having a particular theoretical model in mind. It allows to infer aspects of the theoretical model that may have given rise to this structure, and can be used to cluster or classify the events for analysis purposes. The unsupervised machine-learning technique is based on the probabilistic (Bayesian) generative model of Latent Dirichlet Allocation. We pair the model with an approximate inference algorithm called Variational Inference, which we then use to extract the latent probability distributions describing the learned underlying structure of collider events. We provide a detailed systematic study of the technique using two example scenarios to learn the latent structure of di-jet event samples made up of QCD background events and either tt¯.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Articulos de INSTITUTO DE CIENCIAS FISICAS
Citación
Dillon, B. M.; Faroughy, D. A.; Kamenik, J. F.; Szewc, Manuel; Learning the latent structure of collider events; Springer; Journal of High Energy Physics; 2020; 206; 10-2020; 1-48
Compartir
Altmétricas