Mostrar el registro sencillo del ítem
dc.contributor.author
Chiumiento, Eduardo Hernan
dc.date.available
2022-01-31T16:54:01Z
dc.date.issued
2021-11
dc.identifier.citation
Chiumiento, Eduardo Hernan; On a conjecture by Mbekhta about best approximation by polar factors; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 9; 11-2021; 3913-3922
dc.identifier.issn
0002-9939
dc.identifier.uri
http://hdl.handle.net/11336/150989
dc.description.abstract
The polar factor of a bounded operator acting on a Hilbert space is the unique partial isometry arising in the polar decomposition. It is well known that the polar factor might not be a best approximant to its associated operator in the set of all partial isometries, when the distance is measured in the operator norm. We show that the polar factor of an arbitrary operator T is a best approximant to T in the set of all partial isometries X such that dim(ker(X)∩ker(T)⊥) ≤ dim(ker(X)⊥∩ker(T)). We also provide a characterization of best approximations. This work is motivated by a recent conjecture by M. Mbekhta, which can be answered using our results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BEST APPROXIMATION
dc.subject
INDEX
dc.subject
PAIR OF PROJECTIONS
dc.subject
PARTIAL ISOMETRIES
dc.subject
POLAR DECOMPOSITION
dc.subject
POLAR FACTOR
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On a conjecture by Mbekhta about best approximation by polar factors
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T21:08:09Z
dc.identifier.eissn
1088-6826
dc.journal.volume
149
dc.journal.number
9
dc.journal.pagination
3913-3922
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Proceedings of the American Mathematical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2021-149-09/S0002-9939-2021-15537-8/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/proc/15537
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.01825
Archivos asociados