Artículo
On a conjecture by Mbekhta about best approximation by polar factors
Fecha de publicación:
11/2021
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
e-ISSN:
1088-6826
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The polar factor of a bounded operator acting on a Hilbert space is the unique partial isometry arising in the polar decomposition. It is well known that the polar factor might not be a best approximant to its associated operator in the set of all partial isometries, when the distance is measured in the operator norm. We show that the polar factor of an arbitrary operator T is a best approximant to T in the set of all partial isometries X such that dim(ker(X)∩ker(T)⊥) ≤ dim(ker(X)⊥∩ker(T)). We also provide a characterization of best approximations. This work is motivated by a recent conjecture by M. Mbekhta, which can be answered using our results.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Chiumiento, Eduardo Hernan; On a conjecture by Mbekhta about best approximation by polar factors; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 9; 11-2021; 3913-3922
Compartir
Altmétricas