Artículo
The number of s-separated k-sets in various circles
Fecha de publicación:
02/2021
Editorial:
Combinatorial Mathematics Society of Australasia
Revista:
The Australasian Journal of Combinatorics
ISSN:
2202-3518
e-ISSN:
1034-4942
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This article studies the number of ways of selecting k objects arranged in p circles of sizes n0,...,np−1 such that no two selected ones have less than s objects between them. If ni ≥ sk + 1 for all 0 ≤ i ≤ p − 1, this number is shown to be n0+...+np−2 k n0+...+np−2−sk−1 k−1 . A combinatorial proof of this claim is provided, and two convolution formulas due to Rothe are obtained as corollaries.
Palabras clave:
S-Separation
,
N-Circle
,
K-Stras in Graphs
,
K-Sets
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Estrugo, Emiliano Juan José; Pastine, Adrián Gabriel; The number of s-separated k-sets in various circles; Combinatorial Mathematics Society of Australasia; The Australasian Journal of Combinatorics; 79; 3; 2-2021; 424-436
Compartir