Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Galicer, Daniel Eric  
dc.date.available
2017-04-07T20:27:11Z  
dc.date.issued
2011-10  
dc.identifier.citation
Carando, Daniel Germán; Galicer, Daniel Eric; Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators; Oxford University Press; Quarterly Journal Of Mathematics; 62; 4; 10-2011; 845-869  
dc.identifier.issn
0033-5606  
dc.identifier.uri
http://hdl.handle.net/11336/15021  
dc.description.abstract
We study tensor norms that destroy unconditionality in the following sense: for every Banach space E with unconditional basis, the n-fold tensor product of E (with the corresponding tensor norm) does not have unconditional basis. We establish an easy criterion to check whether a tensor norm destroys unconditionality or not. Using this test we get that all injective and projective tensor norms different from ε and π destroy unconditionality, both in full and symmetric tensor products. We present applications to polynomial ideals: we show that many usual polynomial ideals never have the Gordon–Lewis property. In some cases we even obtain that the monomial basic sequence can never be unconditional. Analogous problems for multilinear ideals are addressed, and noteworthy differences between the 2-fold and the n-fold (n ≥ 3) theory are obtained.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Unconditional Bases  
dc.subject
Tensor Products  
dc.subject
Homogenous Polynomials  
dc.subject
Multilinear Operators  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-06T16:51:39Z  
dc.journal.volume
62  
dc.journal.number
4  
dc.journal.pagination
845-869  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Quarterly Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/62/4/845/1574414/UNCONDITIONALITY-IN-TENSOR-PRODUCTS-AND-IDEALS-OF?redirectedFrom=fulltext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/qmath/haq024