Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Galicer, Daniel Eric
dc.date.available
2017-04-07T20:27:11Z
dc.date.issued
2011-10
dc.identifier.citation
Carando, Daniel Germán; Galicer, Daniel Eric; Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators; Oxford University Press; Quarterly Journal Of Mathematics; 62; 4; 10-2011; 845-869
dc.identifier.issn
0033-5606
dc.identifier.uri
http://hdl.handle.net/11336/15021
dc.description.abstract
We study tensor norms that destroy unconditionality in the following sense: for every Banach space E with unconditional basis, the n-fold tensor product of E (with the corresponding tensor norm) does not have unconditional basis. We establish an easy criterion to check whether a tensor norm destroys unconditionality or not. Using this test we get that all injective and projective tensor norms different from ε and π destroy unconditionality, both in full and symmetric tensor products. We present applications to polynomial ideals: we show that many usual polynomial ideals never have the Gordon–Lewis property. In some cases we even obtain that the monomial basic sequence can never be unconditional. Analogous problems for multilinear ideals are addressed, and noteworthy differences between the 2-fold and the n-fold (n ≥ 3) theory are obtained.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Unconditional Bases
dc.subject
Tensor Products
dc.subject
Homogenous Polynomials
dc.subject
Multilinear Operators
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-06T16:51:39Z
dc.journal.volume
62
dc.journal.number
4
dc.journal.pagination
845-869
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Quarterly Journal Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/62/4/845/1574414/UNCONDITIONALITY-IN-TENSOR-PRODUCTS-AND-IDEALS-OF?redirectedFrom=fulltext
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/qmath/haq024
Archivos asociados