Artículo
Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators
Fecha de publicación:
10/2011
Editorial:
Oxford University Press
Revista:
Quarterly Journal Of Mathematics
ISSN:
0033-5606
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study tensor norms that destroy unconditionality in the following sense: for every Banach space E with unconditional basis, the n-fold tensor product of E (with the corresponding tensor norm) does not have unconditional basis. We establish an easy criterion to check whether a tensor norm destroys unconditionality or not. Using this test we get that all injective and projective tensor norms different from ε and π destroy unconditionality, both in full and symmetric tensor products. We present applications to polynomial ideals: we show that many usual polynomial ideals never have the Gordon–Lewis property. In some cases we even obtain that the monomial basic sequence can never be unconditional. Analogous problems for multilinear ideals are addressed, and noteworthy differences between the 2-fold and the n-fold (n ≥ 3) theory are obtained.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Carando, Daniel Germán; Galicer, Daniel Eric; Unconditionality in tensor products and ideals of polynomials, multilinear forms and operators; Oxford University Press; Quarterly Journal Of Mathematics; 62; 4; 10-2011; 845-869
Compartir
Altmétricas