Artículo
Multipeak Solutions for the Yamabe Equation
Fecha de publicación:
08/2019
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let (M, g) be a closed Riemannian manifold of dimension n≥ 3 and x∈ M be an isolated local minimum of the scalar curvature sg of g. For any positive integer k we prove that for ϵ> 0 small enough the subcritical Yamabe equation -ϵ2Δu+(1+cNϵ2sg)u=uq has a positive k-peaks solution which concentrate around x, assuming that a constant β is non-zero. In the equation cN=N-24(N-1) for an integer N> n and q=N+2N-2. The constant β depends on n and N, and can be easily computed numerically, being negative in all cases considered. This provides solutions to the Yamabe equation on Riemannian products (M× X, g+ ϵ2h) , where (X, h) is a Riemannian manifold with constant positive scalar curvature. We also prove that solutions with small energy only have one local maximum.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Rey, Carolina Ana; Ruiz, Juan Miguel; Multipeak Solutions for the Yamabe Equation; Springer; The Journal Of Geometric Analysis; 31; 2; 8-2019; 1180-1222
Compartir
Altmétricas