Mostrar el registro sencillo del ítem

dc.contributor.author
Da Silva, Joao Vitor  
dc.contributor.author
del Pezzo, Leandro Martin  
dc.contributor.author
Rossi, Julio Daniel  
dc.date.available
2022-01-05T17:06:18Z  
dc.date.issued
2019-11  
dc.identifier.citation
Da Silva, Joao Vitor; del Pezzo, Leandro Martin; Rossi, Julio Daniel; An optimization problem with volume constraint with applications to optimal mass transport; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 267; 10; 11-2019; 5870-5900  
dc.identifier.issn
0022-0396  
dc.identifier.uri
http://hdl.handle.net/11336/149660  
dc.description.abstract
In this manuscript we study the following optimization problem with volume constraint: min{ [Formula presented] ∫Ω|∇v|pdx−∫∂ΩgvdHN−1:v∈W1,p(Ω), and LN({v>0})≤α}. Here Ω⊂RN is a bounded and smooth domain, g is a continuous function and α is a fixed constant such that 00 we prove that a minimizer exists and satisfies {−Δpup=0in {up>0}∪{up<0},|∇up|p−2 [Formula presented] =gon ∂Ω∩∂({up>0}∪{up<0}),LN({up>0})=α. Next, we analyze the limit as p→∞. We obtain that any sequence of weak solutions converges, up to a subsequence, limpj→∞⁡upj (x)=u∞(x), uniformly in Ω‾, and uniform limits, u∞, are solutions to the maximization problem with volume constraint max⁡{∫∂ΩgvdHN−1:v∈W1,∞(Ω),‖∇v‖L∞(Ω)≤1 and LN({v>0})≤α}. Furthermore, we obtain the limit equation that is verified by u∞ in the viscosity sense. Finally, it turns out that such a limit variational problem is connected to the Monge-Kantorovich mass transfer problem with the involved measures are supported on ∂Ω and along the limiting free boundary, ∂{u∞≠0}. Furthermore, we show some explicit examples of solutions for certain configurations of the domain and data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INFINITY-LAPLACE OPERATOR  
dc.subject
MONGE-KANTOROVICH PROBLEM  
dc.subject
NEUMANN BOUNDARY CONDITION  
dc.subject
OPTIMIZATION PROBLEMS  
dc.subject
VOLUME CONSTRAINT  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An optimization problem with volume constraint with applications to optimal mass transport  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-16T18:33:02Z  
dc.journal.volume
267  
dc.journal.number
10  
dc.journal.pagination
5870-5900  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Da Silva, Joao Vitor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Differential Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022039619302773  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jde.2019.06.007