Artículo
An optimization problem with volume constraint with applications to optimal mass transport
Fecha de publicación:
11/2019
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal Of Differential Equations
ISSN:
0022-0396
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this manuscript we study the following optimization problem with volume constraint: min{ [Formula presented] ∫Ω|∇v|pdx−∫∂ΩgvdHN−1:v∈W1,p(Ω), and LN({v>0})≤α}. Here Ω⊂RN is a bounded and smooth domain, g is a continuous function and α is a fixed constant such that 00 we prove that a minimizer exists and satisfies {−Δpup=0in {up>0}∪{up<0},|∇up|p−2 [Formula presented] =gon ∂Ω∩∂({up>0}∪{up<0}),LN({up>0})=α. Next, we analyze the limit as p→∞. We obtain that any sequence of weak solutions converges, up to a subsequence, limpj→∞upj (x)=u∞(x), uniformly in Ω‾, and uniform limits, u∞, are solutions to the maximization problem with volume constraint max{∫∂ΩgvdHN−1:v∈W1,∞(Ω),‖∇v‖L∞(Ω)≤1 and LN({v>0})≤α}. Furthermore, we obtain the limit equation that is verified by u∞ in the viscosity sense. Finally, it turns out that such a limit variational problem is connected to the Monge-Kantorovich mass transfer problem with the involved measures are supported on ∂Ω and along the limiting free boundary, ∂{u∞≠0}. Furthermore, we show some explicit examples of solutions for certain configurations of the domain and data.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Da Silva, Joao Vitor; del Pezzo, Leandro Martin; Rossi, Julio Daniel; An optimization problem with volume constraint with applications to optimal mass transport; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 267; 10; 11-2019; 5870-5900
Compartir
Altmétricas