Mostrar el registro sencillo del ítem
dc.contributor.author
Hernandez, Gabriela Lorena
dc.contributor.author
Muller, Gabriela Viviana
dc.contributor.author
Villacampa, Yolanda
dc.contributor.author
Navarro González, Francisco José
dc.contributor.author
Aragonés, Luis
dc.date.available
2022-01-05T03:05:25Z
dc.date.issued
2020-01
dc.identifier.citation
Hernandez, Gabriela Lorena; Muller, Gabriela Viviana; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis; Predictive models of minimum temperatures for the south of Buenos Aires province; Elsevier; Science of the Total Environment; 699; 1-2020; 1-42
dc.identifier.issn
0048-9697
dc.identifier.uri
http://hdl.handle.net/11336/149607
dc.description.abstract
Depending on the time of development of a crop temperature below 0 °C can cause damage to the plant, altering its development and subsequent yield. Since frosts are identified from the minimum air temperature, the objective of this research paper is to generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated using artificial neural networks and geometric models of finite elements. Six independent variables are used: temperature and dew point temperature at meteorological shelter level, relative humidity, cloudiness observed above the station, wind speed and direction measured at 10 m altitude. Data have been obtained between May and September from 1956 to 2015. Once the available data had been analyzed, this period was reduced to 2007–2015. For the selection of the most suitable model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and the Mean Absolute Error (MAE) are evaluated. The results of the study determine that the geometric model of finite elements with 4 variables, over 9 years (2007–2015) and separated by the season of the year is the one that presents better adjustment in the forecast of Tmin with up to 5 days of anticipation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
AGRICULTURE
dc.subject
CROP TEMPERATURE
dc.subject
FINITE ELEMENTS
dc.subject
PREDICTIVE MODELS
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Predictive models of minimum temperatures for the south of Buenos Aires province
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-27T18:47:46Z
dc.journal.volume
699
dc.journal.pagination
1-42
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Hernandez, Gabriela Lorena. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomía; Argentina
dc.description.fil
Fil: Muller, Gabriela Viviana. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Centro de Estudios de Variabilidad y Cambio Climático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Villacampa, Yolanda. Universidad de Alicante; España
dc.description.fil
Fil: Navarro González, Francisco José. Universidad de Alicante; España
dc.description.fil
Fil: Aragonés, Luis. Universidad de Alicante; España
dc.journal.title
Science of the Total Environment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0048969719342639
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scitotenv.2019.134280
Archivos asociados