Mostrar el registro sencillo del ítem

dc.contributor.author
Hernandez, Gabriela Lorena  
dc.contributor.author
Muller, Gabriela Viviana  
dc.contributor.author
Villacampa, Yolanda  
dc.contributor.author
Navarro González, Francisco José  
dc.contributor.author
Aragonés, Luis  
dc.date.available
2022-01-05T03:05:25Z  
dc.date.issued
2020-01  
dc.identifier.citation
Hernandez, Gabriela Lorena; Muller, Gabriela Viviana; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis; Predictive models of minimum temperatures for the south of Buenos Aires province; Elsevier; Science of the Total Environment; 699; 1-2020; 1-42  
dc.identifier.issn
0048-9697  
dc.identifier.uri
http://hdl.handle.net/11336/149607  
dc.description.abstract
Depending on the time of development of a crop temperature below 0 °C can cause damage to the plant, altering its development and subsequent yield. Since frosts are identified from the minimum air temperature, the objective of this research paper is to generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated using artificial neural networks and geometric models of finite elements. Six independent variables are used: temperature and dew point temperature at meteorological shelter level, relative humidity, cloudiness observed above the station, wind speed and direction measured at 10 m altitude. Data have been obtained between May and September from 1956 to 2015. Once the available data had been analyzed, this period was reduced to 2007–2015. For the selection of the most suitable model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and the Mean Absolute Error (MAE) are evaluated. The results of the study determine that the geometric model of finite elements with 4 variables, over 9 years (2007–2015) and separated by the season of the year is the one that presents better adjustment in the forecast of Tmin with up to 5 days of anticipation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
AGRICULTURE  
dc.subject
CROP TEMPERATURE  
dc.subject
FINITE ELEMENTS  
dc.subject
PREDICTIVE MODELS  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Predictive models of minimum temperatures for the south of Buenos Aires province  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-27T18:47:46Z  
dc.journal.volume
699  
dc.journal.pagination
1-42  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Hernandez, Gabriela Lorena. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Muller, Gabriela Viviana. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Centro de Estudios de Variabilidad y Cambio Climático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Villacampa, Yolanda. Universidad de Alicante; España  
dc.description.fil
Fil: Navarro González, Francisco José. Universidad de Alicante; España  
dc.description.fil
Fil: Aragonés, Luis. Universidad de Alicante; España  
dc.journal.title
Science of the Total Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0048969719342639  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scitotenv.2019.134280