Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predictive models of minimum temperatures for the south of Buenos Aires province

Hernandez, Gabriela Lorena; Muller, Gabriela VivianaIcon ; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis
Fecha de publicación: 01/2020
Editorial: Elsevier
Revista: Science of the Total Environment
ISSN: 0048-9697
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Depending on the time of development of a crop temperature below 0 °C can cause damage to the plant, altering its development and subsequent yield. Since frosts are identified from the minimum air temperature, the objective of this research paper is to generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated using artificial neural networks and geometric models of finite elements. Six independent variables are used: temperature and dew point temperature at meteorological shelter level, relative humidity, cloudiness observed above the station, wind speed and direction measured at 10 m altitude. Data have been obtained between May and September from 1956 to 2015. Once the available data had been analyzed, this period was reduced to 2007–2015. For the selection of the most suitable model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and the Mean Absolute Error (MAE) are evaluated. The results of the study determine that the geometric model of finite elements with 4 variables, over 9 years (2007–2015) and separated by the season of the year is the one that presents better adjustment in the forecast of Tmin with up to 5 days of anticipation.
Palabras clave: AGRICULTURE , CROP TEMPERATURE , FINITE ELEMENTS , PREDICTIVE MODELS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.174Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/149607
URL: https://www.sciencedirect.com/science/article/abs/pii/S0048969719342639
DOI: http://dx.doi.org/10.1016/j.scitotenv.2019.134280
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Hernandez, Gabriela Lorena; Muller, Gabriela Viviana; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis; Predictive models of minimum temperatures for the south of Buenos Aires province; Elsevier; Science of the Total Environment; 699; 1-2020; 1-42
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES