Mostrar el registro sencillo del ítem
dc.contributor.author
Silva, Analia

dc.date.available
2017-04-06T20:45:10Z
dc.date.issued
2011-01
dc.identifier.citation
Silva, Analia; Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth; Advanced Nonlinear Studies, Inc; Advanced Nonlinear Studies; 11; 1; 1-2011; 63-75
dc.identifier.issn
1536-1365
dc.identifier.uri
http://hdl.handle.net/11336/14926
dc.description.abstract
The aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δp(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} ≠ ø, where p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents and Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational arguments and the extension of concentration compactness method for variable exponent spaces.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Advanced Nonlinear Studies, Inc

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Concentration-Compactness Principle
dc.subject
Variable Exponent Spaces
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-06T16:51:18Z
dc.journal.volume
11
dc.journal.number
1
dc.journal.pagination
63-75
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Advanced Nonlinear Studies

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0103/ans-2011-0103.xml
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ans-2011-0103
Archivos asociados