Mostrar el registro sencillo del ítem

dc.contributor.author
Silva, Analia  
dc.date.available
2017-04-06T20:45:10Z  
dc.date.issued
2011-01  
dc.identifier.citation
Silva, Analia; Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth; Advanced Nonlinear Studies, Inc; Advanced Nonlinear Studies; 11; 1; 1-2011; 63-75  
dc.identifier.issn
1536-1365  
dc.identifier.uri
http://hdl.handle.net/11336/14926  
dc.description.abstract
The aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δp(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} ≠ ø, where p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents and Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational arguments and the extension of concentration compactness method for variable exponent spaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Advanced Nonlinear Studies, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Concentration-Compactness Principle  
dc.subject
Variable Exponent Spaces  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-06T16:51:18Z  
dc.journal.volume
11  
dc.journal.number
1  
dc.journal.pagination
63-75  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Advanced Nonlinear Studies  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0103/ans-2011-0103.xml  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ans-2011-0103