Artículo
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth
Fecha de publicación:
01/2011
Editorial:
Advanced Nonlinear Studies, Inc
Revista:
Advanced Nonlinear Studies
ISSN:
1536-1365
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δp(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} ≠ ø, where p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents and Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational arguments and the extension of concentration compactness method for variable exponent spaces.
Palabras clave:
Concentration-Compactness Principle
,
Variable Exponent Spaces
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Silva, Analia; Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth; Advanced Nonlinear Studies, Inc; Advanced Nonlinear Studies; 11; 1; 1-2011; 63-75
Compartir
Altmétricas