Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Taking the leap between analytical chemistry and artificial intelligence: A tutorial review

Ayres, Lucas B.; Gomez, Federico Jose VicenteIcon ; Linton, Jeb R.; Silva, María FernandaIcon ; Garcia, Carlos D.
Fecha de publicación: 05/2021
Editorial: Elsevier Science
Revista: Analytica Chimica Acta
ISSN: 0003-2670
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

The last 10 years have witnessed the growth of artificial intelligence into different research areas, emerging as a vibrant discipline with the capacity to process large amounts of information and even intuitively interact with humans. In the chemical world, these innovations in both hardware and algorithms have allowed the development of revolutionary approaches in organic synthesis, drug discovery, and materials’ design. Despite these advances, the use of AI to support analytical purposes has been mostly limited to data-intensive methodologies linked to image recognition, vibrational spectroscopy, and mass spectrometry but not to other technologies that, albeit simpler, offer promise of greatly enhanced analytics now that AI is becoming mature enough to take advantage of them. To address the imminent opportunity of analytical chemists to use AI, this tutorial review aims to serve as a first step for junior researchers considering integrating AI into their programs. Thus, basic concepts related to AI are first discussed followed by a critical assessment of representative reports integrating AI with various sensors, spectroscopies, and separation techniques. For those with the courage (and the time) needed to get started, the review also provides a general sequence of steps to begin integrating AI into their programs.
Palabras clave: ANALYTICAL , ARTIFICIAL INTELLIGENCE , DEEP LEARNING , SENSORS , SPECTROSCOPY
Ver el registro completo
 
Archivos asociados
Tamaño: 2.133Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/149144
DOI: http://dx.doi.org/10.1016/j.aca.2021.338403
URL: https://www.sciencedirect.com/science/article/pii/S0003267021002294?via%3Dihub
Colecciones
Articulos(IBAM)
Articulos de INST.DE BIOLOGIA AGRICOLA DE MENDOZA
Citación
Ayres, Lucas B.; Gomez, Federico Jose Vicente; Linton, Jeb R.; Silva, María Fernanda; Garcia, Carlos D.; Taking the leap between analytical chemistry and artificial intelligence: A tutorial review; Elsevier Science; Analytica Chimica Acta; 1161; 5-2021; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES