Mostrar el registro sencillo del ítem

dc.contributor.author
Ahmadi Asl, Salman  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Cichocki, Andrzej  
dc.contributor.author
Phan, Anh Huy  
dc.contributor.author
Tanaka, Toshihisa  
dc.contributor.author
Oseledets, Ivan  
dc.contributor.author
Wang, Jun  
dc.date.available
2021-12-21T11:44:51Z  
dc.date.issued
2021-11  
dc.identifier.citation
Ahmadi Asl, Salman; Caiafa, César Federico; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; et al.; Cross Tensor Approximation Methods for Compression and Dimensionality Reduction; IEEE; IEEE Access; 9; 11-2021; 150809-150838  
dc.identifier.issn
2169-3536  
dc.identifier.uri
http://hdl.handle.net/11336/149081  
dc.description.abstract
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on  ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CUR algorithms  
dc.subject
cross approximations  
dc.subject
tensor decomposition  
dc.subject
randomization  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T19:44:20Z  
dc.identifier.eissn
2169-3536  
dc.journal.volume
9  
dc.journal.pagination
150809-150838  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Ahmadi Asl, Salman. Skoltech - Skolkovo Institute Of Science And Technology; Rusia  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Cichocki, Andrzej. Skolkovo Institute of Science and Technology; Rusia  
dc.description.fil
Fil: Phan, Anh Huy. Skolkovo Institute of Science and Technology; Rusia  
dc.description.fil
Fil: Tanaka, Toshihisa. Agricultural University Of Tokyo; Japón  
dc.description.fil
Fil: Oseledets, Ivan. Skolkovo Institute of Science and Technology; Rusia  
dc.description.fil
Fil: Wang, Jun. Skolkovo Institute of Science and Technology; Rusia  
dc.journal.title
IEEE Access  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9599673?source=authoralert  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2021.3125069