Mostrar el registro sencillo del ítem
dc.contributor.author
Ahmadi Asl, Salman
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Cichocki, Andrzej
dc.contributor.author
Phan, Anh Huy
dc.contributor.author
Tanaka, Toshihisa
dc.contributor.author
Oseledets, Ivan
dc.contributor.author
Wang, Jun
dc.date.available
2021-12-21T11:44:51Z
dc.date.issued
2021-11
dc.identifier.citation
Ahmadi Asl, Salman; Caiafa, César Federico; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; et al.; Cross Tensor Approximation Methods for Compression and Dimensionality Reduction; IEEE; IEEE Access; 9; 11-2021; 150809-150838
dc.identifier.issn
2169-3536
dc.identifier.uri
http://hdl.handle.net/11336/149081
dc.description.abstract
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IEEE
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CUR algorithms
dc.subject
cross approximations
dc.subject
tensor decomposition
dc.subject
randomization
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T19:44:20Z
dc.identifier.eissn
2169-3536
dc.journal.volume
9
dc.journal.pagination
150809-150838
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Ahmadi Asl, Salman. Skoltech - Skolkovo Institute Of Science And Technology; Rusia
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Cichocki, Andrzej. Skolkovo Institute of Science and Technology; Rusia
dc.description.fil
Fil: Phan, Anh Huy. Skolkovo Institute of Science and Technology; Rusia
dc.description.fil
Fil: Tanaka, Toshihisa. Agricultural University Of Tokyo; Japón
dc.description.fil
Fil: Oseledets, Ivan. Skolkovo Institute of Science and Technology; Rusia
dc.description.fil
Fil: Wang, Jun. Skolkovo Institute of Science and Technology; Rusia
dc.journal.title
IEEE Access
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9599673?source=authoralert
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2021.3125069
Archivos asociados