Artículo
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
Ahmadi Asl, Salman; Caiafa, César Federico
; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; Oseledets, Ivan; Wang, Jun
Fecha de publicación:
11/2021
Editorial:
IEEE
Revista:
IEEE Access
ISSN:
2169-3536
e-ISSN:
2169-3536
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.
Palabras clave:
CUR algorithms
,
cross approximations
,
tensor decomposition
,
randomization
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Ahmadi Asl, Salman; Caiafa, César Federico; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; et al.; Cross Tensor Approximation Methods for Compression and Dimensionality Reduction; IEEE; IEEE Access; 9; 11-2021; 150809-150838
Compartir
Altmétricas