Mostrar el registro sencillo del ítem
dc.contributor.author
Mosquera, Candelaria.
dc.contributor.author
Diaz, Facundo Nahuel
dc.contributor.author
Binder, Fernando

dc.contributor.author
Ravellino, José Martin
dc.contributor.author
Benítez, Sonia Bibiana

dc.contributor.author
Beresñak, Alejandro
dc.contributor.author
Seehaus, Alberto
dc.contributor.author
Ducrey, Gabriel
dc.contributor.author
Ocantos, Jorge A.
dc.contributor.author
Luna, Daniel Roberto

dc.date.available
2021-12-14T12:44:10Z
dc.date.issued
2021-07
dc.identifier.citation
Mosquera, Candelaria.; Diaz, Facundo Nahuel; Binder, Fernando; Ravellino, José Martin; Benítez, Sonia Bibiana; et al.; Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures; Elsevier Ireland; Computer Methods And Programs In Biomedicine; 206; 7-2021; 1-20
dc.identifier.issn
0169-2607
dc.identifier.uri
http://hdl.handle.net/11336/148691
dc.description.abstract
Background and objectives: The multiple chest x-ray datasets released in the last years have ground-truth labels intended for different computer vision tasks, suggesting that performance in automated chest x-ray interpretation might improve by using a method that can exploit diverse types of annotations. This work presents a Deep Learning method based on the late fusion of different convolutional architectures, that allows training with heterogeneous data with a simple implementation, and evaluates its performance on independent test data. We focused on obtaining a clinically useful tool that could be successfully integrated into a hospital workflow. Materials and methods: Based on expert opinion, we selected four target chest x-ray findings, namely lung opacities, fractures, pneumothorax and pleural effusion. For each finding we defined the most suitable type of ground-truth label, and built four training datasets combining images from public chest x-ray datasets and our institutional archive. We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool. The performance was measured on two test datasets: an external openly-available dataset, and a retrospective institutional dataset, to estimate performance on the local population. Results: The external and local test sets had 4376 and 1064 images, respectively, for which the model showed an area under the Receiver Operating Characteristics curve of 0.75 (95%CI: 0.74–0.76) and 0.87 (95%CI: 0.86–0.89) in the detection of abnormal chest x-rays. For the local population, a sensitivity of 86% (95%CI: 84–90), and a specificity of 88% (95%CI: 86–90) were obtained, with no significant differences between demographic subgroups. We present examples of heatmaps to show the accomplished level of interpretability, examining true and false positives. Conclusion: This study presents a new approach for exploiting heterogeneous labels from different chest x-ray datasets, by choosing Deep Learning architectures according to the radiological characteristics of each pathological finding. We estimated the tool's performance on the local population, obtaining results comparable to state-of-the-art metrics. We believe this approach is closer to the actual reading process of chest x-rays by professionals, and therefore more likely to be successful in a real clinical setting.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Ireland

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
CHEST
dc.subject
CLINICAL DECISION SUPPORT SYSTEMS
dc.subject
DEEP LEARNING
dc.subject
RADIOGRAPHY
dc.subject.classification
Otras Ciencias de la Salud

dc.subject.classification
Ciencias de la Salud

dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD

dc.title
Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T20:40:50Z
dc.journal.volume
206
dc.journal.pagination
1-20
dc.journal.pais
Irlanda
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Mosquera, Candelaria.. Universidad Tecnológica Nacional; Argentina. Hospital Italiano; Argentina
dc.description.fil
Fil: Diaz, Facundo Nahuel. Hospital Italiano; Argentina
dc.description.fil
Fil: Binder, Fernando. Hospital Italiano; Argentina
dc.description.fil
Fil: Ravellino, José Martin. Hospital Italiano; Argentina
dc.description.fil
Fil: Benítez, Sonia Bibiana. Hospital Italiano; Argentina
dc.description.fil
Fil: Beresñak, Alejandro. Hospital Italiano; Argentina
dc.description.fil
Fil: Seehaus, Alberto. Hospital Italiano; Argentina
dc.description.fil
Fil: Ducrey, Gabriel. Hospital Italiano; Argentina
dc.description.fil
Fil: Ocantos, Jorge A.. Hospital Italiano; Argentina
dc.description.fil
Fil: Luna, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; Argentina
dc.journal.title
Computer Methods And Programs In Biomedicine
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169260721002054?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cmpb.2021.106130
Archivos asociados