Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures

Mosquera, Candelaria.; Diaz, Facundo Nahuel; Binder, Fernando; Ravellino, José Martin; Benítez, Sonia Bibiana; Beresñak, Alejandro; Seehaus, Alberto; Ducrey, Gabriel; Ocantos, Jorge A.; Luna, Daniel RobertoIcon
Fecha de publicación: 07/2021
Editorial: Elsevier Ireland
Revista: Computer Methods And Programs In Biomedicine
ISSN: 0169-2607
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Background and objectives: The multiple chest x-ray datasets released in the last years have ground-truth labels intended for different computer vision tasks, suggesting that performance in automated chest x-ray interpretation might improve by using a method that can exploit diverse types of annotations. This work presents a Deep Learning method based on the late fusion of different convolutional architectures, that allows training with heterogeneous data with a simple implementation, and evaluates its performance on independent test data. We focused on obtaining a clinically useful tool that could be successfully integrated into a hospital workflow. Materials and methods: Based on expert opinion, we selected four target chest x-ray findings, namely lung opacities, fractures, pneumothorax and pleural effusion. For each finding we defined the most suitable type of ground-truth label, and built four training datasets combining images from public chest x-ray datasets and our institutional archive. We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool. The performance was measured on two test datasets: an external openly-available dataset, and a retrospective institutional dataset, to estimate performance on the local population. Results: The external and local test sets had 4376 and 1064 images, respectively, for which the model showed an area under the Receiver Operating Characteristics curve of 0.75 (95%CI: 0.74–0.76) and 0.87 (95%CI: 0.86–0.89) in the detection of abnormal chest x-rays. For the local population, a sensitivity of 86% (95%CI: 84–90), and a specificity of 88% (95%CI: 86–90) were obtained, with no significant differences between demographic subgroups. We present examples of heatmaps to show the accomplished level of interpretability, examining true and false positives. Conclusion: This study presents a new approach for exploiting heterogeneous labels from different chest x-ray datasets, by choosing Deep Learning architectures according to the radiological characteristics of each pathological finding. We estimated the tool's performance on the local population, obtaining results comparable to state-of-the-art metrics. We believe this approach is closer to the actual reading process of chest x-rays by professionals, and therefore more likely to be successful in a real clinical setting.
Palabras clave: ARTIFICIAL INTELLIGENCE , CHEST , CLINICAL DECISION SUPPORT SYSTEMS , DEEP LEARNING , RADIOGRAPHY
Ver el registro completo
 
Archivos asociados
Tamaño: 1.745Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/148691
URL: https://www.sciencedirect.com/science/article/abs/pii/S0169260721002054?via%3Dih
DOI: http://dx.doi.org/10.1016/j.cmpb.2021.106130
Colecciones
Articulos (IMTIB)
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL E INGENIERIA BIOMEDICA
Citación
Mosquera, Candelaria.; Diaz, Facundo Nahuel; Binder, Fernando; Ravellino, José Martin; Benítez, Sonia Bibiana; et al.; Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures; Elsevier Ireland; Computer Methods And Programs In Biomedicine; 206; 7-2021; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES