Mostrar el registro sencillo del ítem

dc.contributor.author
Navarro, Jose Pablo  
dc.contributor.author
Cintas, Celia  
dc.contributor.author
Lucena, Manuel  
dc.contributor.author
Fuertes, José Manuel  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Molinos, Manuel  
dc.date.available
2021-12-13T05:25:09Z  
dc.date.issued
2021-02  
dc.identifier.citation
Navarro, Jose Pablo; Cintas, Celia; Lucena, Manuel; Fuertes, José Manuel; Delrieux, Claudio Augusto; et al.; Learning feature representation of Iberian ceramics with automatic classification models; Elsevier France-Editions Scientifiques Medicales Elsevier; Journal of Cultural Heritage; 48; 2-2021; 65-73  
dc.identifier.issn
1296-2074  
dc.identifier.uri
http://hdl.handle.net/11336/148572  
dc.description.abstract
In Cultural Heritage inquiries, a common requirement is to establish time-based trends between archaeological artifacts belonging to different periods of a given culture, enabling among other things to determine chronological inferences with higher accuracy and precision. Among these, pottery vessels are significantly useful, given their relative abundance in most archaeological sites. However, this very abundance makes difficult and complex an accurate representation, since no two of these vessels are identical, and therefore classification criteria must be justified and applied. For this purpose, we propose the use of deep learning architectures to extract automatically learned features without prior knowledge or engineered features. By means of transfer learning, we retrained a Residual Neural Network with a binary image database of Iberian wheel-made pottery vessels? profiles. These vessels pertain to archaeological sites located in the upper valley of the Guadalquivir River (Spain). The resulting model can provide an accurate feature representation space, which can automatically classify profile images, achieving a mean accuracy of 0.96 with an f-measure of 0.96. This accuracy is remarkably higher than other state-of-the-art machine learning approaches, where several feature extraction techniques were applied together with multiple classifier models. These results provide novel strategies to current research in automatic feature representation and classification of different objects of study within the Archaeology domain.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier France-Editions Scientifiques Medicales Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
IBERIAN POTTERY  
dc.subject
REPRESENTATION LEARNING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning feature representation of Iberian ceramics with automatic classification models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-07-27T15:01:04Z  
dc.journal.volume
48  
dc.journal.pagination
65-73  
dc.journal.pais
Francia  
dc.description.fil
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. IBM Research Africa; Kenia  
dc.description.fil
Fil: Cintas, Celia. IBM Research Africa; Kenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lucena, Manuel. Universidad de Jaén; España  
dc.description.fil
Fil: Fuertes, José Manuel. Universidad de Jaén; España  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: Molinos, Manuel. Universidad de Jaén; España  
dc.journal.title
Journal of Cultural Heritage  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.culher.2021.01.003  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1296207421000042