Mostrar el registro sencillo del ítem
dc.contributor.author
Navarro, Jose Pablo
dc.contributor.author
Cintas, Celia
dc.contributor.author
Lucena, Manuel
dc.contributor.author
Fuertes, José Manuel
dc.contributor.author
Delrieux, Claudio Augusto
dc.contributor.author
Molinos, Manuel
dc.date.available
2021-12-13T05:25:09Z
dc.date.issued
2021-02
dc.identifier.citation
Navarro, Jose Pablo; Cintas, Celia; Lucena, Manuel; Fuertes, José Manuel; Delrieux, Claudio Augusto; et al.; Learning feature representation of Iberian ceramics with automatic classification models; Elsevier France-Editions Scientifiques Medicales Elsevier; Journal of Cultural Heritage; 48; 2-2021; 65-73
dc.identifier.issn
1296-2074
dc.identifier.uri
http://hdl.handle.net/11336/148572
dc.description.abstract
In Cultural Heritage inquiries, a common requirement is to establish time-based trends between archaeological artifacts belonging to different periods of a given culture, enabling among other things to determine chronological inferences with higher accuracy and precision. Among these, pottery vessels are significantly useful, given their relative abundance in most archaeological sites. However, this very abundance makes difficult and complex an accurate representation, since no two of these vessels are identical, and therefore classification criteria must be justified and applied. For this purpose, we propose the use of deep learning architectures to extract automatically learned features without prior knowledge or engineered features. By means of transfer learning, we retrained a Residual Neural Network with a binary image database of Iberian wheel-made pottery vessels? profiles. These vessels pertain to archaeological sites located in the upper valley of the Guadalquivir River (Spain). The resulting model can provide an accurate feature representation space, which can automatically classify profile images, achieving a mean accuracy of 0.96 with an f-measure of 0.96. This accuracy is remarkably higher than other state-of-the-art machine learning approaches, where several feature extraction techniques were applied together with multiple classifier models. These results provide novel strategies to current research in automatic feature representation and classification of different objects of study within the Archaeology domain.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier France-Editions Scientifiques Medicales Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
IBERIAN POTTERY
dc.subject
REPRESENTATION LEARNING
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Learning feature representation of Iberian ceramics with automatic classification models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-07-27T15:01:04Z
dc.journal.volume
48
dc.journal.pagination
65-73
dc.journal.pais
Francia
dc.description.fil
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. IBM Research Africa; Kenia
dc.description.fil
Fil: Cintas, Celia. IBM Research Africa; Kenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lucena, Manuel. Universidad de Jaén; España
dc.description.fil
Fil: Fuertes, José Manuel. Universidad de Jaén; España
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
dc.description.fil
Fil: Molinos, Manuel. Universidad de Jaén; España
dc.journal.title
Journal of Cultural Heritage
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.culher.2021.01.003
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1296207421000042
Archivos asociados