Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning feature representation of Iberian ceramics with automatic classification models

Navarro, Jose PabloIcon ; Cintas, CeliaIcon ; Lucena, Manuel; Fuertes, José Manuel; Delrieux, Claudio AugustoIcon ; Molinos, Manuel
Fecha de publicación: 02/2021
Editorial: Elsevier France-Editions Scientifiques Medicales Elsevier
Revista: Journal of Cultural Heritage
ISSN: 1296-2074
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

In Cultural Heritage inquiries, a common requirement is to establish time-based trends between archaeological artifacts belonging to different periods of a given culture, enabling among other things to determine chronological inferences with higher accuracy and precision. Among these, pottery vessels are significantly useful, given their relative abundance in most archaeological sites. However, this very abundance makes difficult and complex an accurate representation, since no two of these vessels are identical, and therefore classification criteria must be justified and applied. For this purpose, we propose the use of deep learning architectures to extract automatically learned features without prior knowledge or engineered features. By means of transfer learning, we retrained a Residual Neural Network with a binary image database of Iberian wheel-made pottery vessels? profiles. These vessels pertain to archaeological sites located in the upper valley of the Guadalquivir River (Spain). The resulting model can provide an accurate feature representation space, which can automatically classify profile images, achieving a mean accuracy of 0.96 with an f-measure of 0.96. This accuracy is remarkably higher than other state-of-the-art machine learning approaches, where several feature extraction techniques were applied together with multiple classifier models. These results provide novel strategies to current research in automatic feature representation and classification of different objects of study within the Archaeology domain.
Palabras clave: DEEP LEARNING , IBERIAN POTTERY , REPRESENTATION LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.135Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/148572
DOI: http://dx.doi.org/10.1016/j.culher.2021.01.003
URL: https://www.sciencedirect.com/science/article/abs/pii/S1296207421000042
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(IPCSH)
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
Navarro, Jose Pablo; Cintas, Celia; Lucena, Manuel; Fuertes, José Manuel; Delrieux, Claudio Augusto; et al.; Learning feature representation of Iberian ceramics with automatic classification models; Elsevier France-Editions Scientifiques Medicales Elsevier; Journal of Cultural Heritage; 48; 2-2021; 65-73
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES