Capítulo de Libro
In silico modeling of FDA-approved drugs for discovery of therapies against neglected diseases: A drug repurposing approach
Título del libro: In silico drug design methods for drug repurposing
Bellera, Carolina Leticia
; Sbaraglini, Maria Laura
; Alberca, Lucas Nicolás
; Alice, Juan Ignacio
; Talevi, Alan
Otros responsables:
Kunal, Roy
Fecha de publicación:
2019
Editorial:
Elsevier
ISBN:
978-0-12-816125-8
Idioma:
Inglés
Clasificación temática:
Resumen
Drug repurposing (i.e., finding new therapeutic uses for already known drugs, including approved, abandoned, discontinued, and investigational drugs) is being extensively applied worldwide to expedite the development of novel therapeutic solutions. Such strategy could be particularly relevant in the fields of neglected and rare diseases, where drug development funding is scarce and most of the ongoing research is funded by the public sector or not-for-profit initiatives. In silico tools can make the drug repurposing approach even more cost-efficient. Here, we present an overview of cheminformatic, bioinformatic, text mining, and network-based approaches that are currently applied to guide drug repurposing, including virtual screening, target fishing, estimation of molecular determinants of promiscuity, binding site similarity predictions, the similarity ensemble approach, among others. Specific applications of such techniques within the field of neglected conditions are discussed, when available.
Palabras clave:
DRUG REPURPOSING
,
NEGLECTED DISEASES
,
IN SILICO MODELING
,
DRUG DISCOVERY
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(CCT - LA PLATA)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Bellera, Carolina Leticia; Sbaraglini, Maria Laura; Alberca, Lucas Nicolás; Alice, Juan Ignacio; Talevi, Alan; In silico modeling of FDA-approved drugs for discovery of therapies against neglected diseases: A drug repurposing approach; Elsevier; 2019; 625-644
Compartir
Altmétricas